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1. Introduction to the theme

1.1 General description and reading guide

The theme of model-based estimation can be interpreted very broadly. Most 

branches of statistics are model-based in the sense that results are based on explicit

probability models that relate missing information to available information. The 

objective of this description is to demonstrate how relatively simple models can be 

used to make estimates for population variables. We are concentrating on estimates

of averages or totals for finite populations or subpopulations.

The theory of survey sampling is usually described from a design-based perspective, 

which focuses on the probability mechanism that is used to select the sample.

However, there are situations in which a design-based approach does not work well 

or at all. Two such situations are those in which:

1. there is no known random sample design, such as for administrative data 

from incomplete registers or for specific kinds of internet surveys.

2. there is too little sample data available to make reliable estimates. This is 

particularly the case if the level of detail for which figures must be produced 

is high, such that the sample size is small in the various subpopulations.

In these situations, model-based estimation methods can be used. First, we will 

discuss how population totals can be estimated using linear regression models. 

These models do not depend explicitly on a sample design and can therefore be used 

in situation 1. We then state a number of issues that must be paid attention to in the 

use of these models. The estimators that are derived from the use of these models are 

also called synthetic estimators. If sufficient suitable auxiliary variables are available 

as input for the regression model, then synthetic estimators can also be used to make 

estimates for small areas. 

In the second subtheme, we discuss a simple type of model that is suitable for small 

area estimates, also in situations where synthetic estimates are not adequate. Small 

areas are subpopulations for which the sample size is too small to make reliable 

direct (design-based) estimates. The model, which links the various areas with one 

another, possibly by making use of relevant auxiliary information at area level, 

provides better estimates. The subtheme of small area estimators thus deals with 

situation 2.

1.2 Scope and relationship with other themes

We distinguish between two subthemes in the theme of model-based estimation: 

synthetic estimators and small area estimators. Other themes in the Methods Series, 

including macro-integration and seasonal correction/time series models, also use 

model-based estimation methods.
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The concept of the synthetic estimator is used for estimators based on regression 

models with only fixed effects, without random effects. Fixed effects are the 

common regression coefficients, while random effects can be interpreted as a group 

of regression coefficients with the prior constraint that they are distributed around 0

according to a multivariate probability distribution. We will only describe synthetic

estimators based on linear regression models here. Therefore, synthetic estimators 

based on, for example, a logistic regression model are not discussed. The subtheme

of small area estimators further addresses models with both fixed and random 

effects, also known as mixed models. Here the random effects correspond to the area

indicators, and can explain differences between areas when these differences cannot 

be explained by the other auxiliary variables used.

The model for small area estimates that is addressed in the second subtheme is 

formulated at area level. This means that the area averages to be estimated are

directly modelled in terms of auxiliary variables at area level. In addition, direct 

estimates and the associated variance estimates are used as input data for areas. 

Small area models formulated at the unit level, say, the person level, are not 

discussed.

In the case of random samples, the synthetic estimator for the population total based 

on linear regression models will often correspond to the general regression

estimator, certainly in sample designs with equal inclusion probabilities. Section 2.5 

addresses this in more detail. The methodology of the general regression estimator

and the related weighting are addressed in other themes in the Methods Series: 

‘Sampling theory’ and ‘Weighting for non-response’. There is also a strong 

relationship with the method of regression imputation addressed in ‘Imputation’. In 

this case, missing values are replaced at micro-level by imputed values based on a 

regression model, and in contrast to synthetic estimators, the estimation of 

population totals or averages does not have to be a primary goal.

1.3 Place in the statistical process

In the statistical process, ‘Estimation’ follows after ‘Checking and editing the data’. 

This is not different for synthetic estimation. Here it will relate to, for example, 

register data that must first be linked to a population register (“backbone”) and then 

edited.

The small area estimators that are discussed in the second subtheme use direct 

estimates and the associated variance estimates at area level as input data. These

direct estimates can arise from a weighting of the sample data. The Bascula 

weighting program can calculate both estimates for subpopulations and the 

associated variance estimates; see Nieuwenbroek and Boonstra (2002).
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1.4 Definitions

Concept Description

Synthetic estimates Estimates based on a (linear) regression model, for which 
scores on the target variable for the non-observed units are 
predicted from the model.

Small areas Publication cells for which the amount of observed data is so 
small that an estimate based only on this data would be too 
inaccurate.

Small area estimates Estimates for small areas. In order to get accurate estimates, a 
model is used that relates areas in such a way that data from 
different areas contributes to the estimate for a particular small
area.

1.5 General notation

We assume a target variable y for which the population total or mean must be 

estimated. This variable takes the values of y1, …, yN  for the population units U={1,

…, N}. For a subset s of n < N unique units, the values of y are known. We assume 

that these values are error-free. The subset s can be the response of a sample/random 

sample or it can be the set of units of an incomplete register, but we will usually call 

it the sample. We indicate the complement of the sample in the population, thus all 

of the units for which the target variable is not known, as r = U\s. This consists of N

– n units.

In addition, we assume the presence of a vector of auxiliary variables x which are 

known for the entire population U. The vector x has the dimension p.

Sample averages are written as xy,  and population totals as xy tt , . Therefore 

∑
Î

=
Ui

iy yt  and ( )∑
Î

=
si

iyny 1 , etc. Population averages are obtained by dividing 

xy tt , by N, Nt yy =q  and Ntxx =q , where the population size N is assumed to 

be known.

For m subpopulations or areas, we use an index d = 1, …, m. For example, this 

means that  ∑
Î

=
dUi

idy yt ; is the population total of y in area d, and ddydy Nt ;; =q is 

the population average of y in area d, with dN the population size of area d. Sample 

averages are written as  dd xy , ; these are averages of the sample ds of size dn

which falls in subpopulation d. The other, not observed, dd nN - units in 

subpopulation d are indicated by dr .
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2. Synthetic estimators

2.1 Brief description

The linear regression model for the target variable y given the auxiliary variables x is

ii
T

i xy εβ += , (2.1.1)

where β is a p-vector of regression coefficients and iε a normally distributed error 

term, independently for I = 1, …, N.

The model is fitted using the sample data (y, x) for the units in s. The units in r = U\s 

are then predicted based on the fitted model. The estimate for the population total of 

y will thus be

)(ˆˆˆ xntynyyt x
T

ri
i

si
iy −+=+= ∑∑

∈∈

β , (2.1.2)

where β̂ is the vector of estimated regression coefficients. Therefore, in (2.1.2), the 

observed sample speaks for itself and the rest is predicted according to the fitted

model. Note that the population totals tx must be known, in addition to the sample 

averages x . Due to the linear structure of the model, the individual values of x for 

units in r=U\s do not have to be available.

Other population variables can be estimated in a similar manner. Totals for 

subpopulations, for example, are estimated according to 

)(ˆˆˆ ;; dddx
T

dd
ri

i
si

idy xntynyyt
dd

−+=+= ∑∑
∈∈

β , (2.1.3)

where dxt ; are the population totals of x in subpopulation d.

A more extensive description follows in section 2.3. Additional information about 

model-based estimation for samples from finite populations can be found in Rubin 

(1987), Ghosh and Meeden (1997), Vaillant et al (2000) and Rao (2003).

2.2 Applicability

The linear regression model and the resulting synthetic estimators are widely 

applicable. In particular, these model-based estimation techniques can be used to 

replace design-based methods to estimate population totals when a known random 

sample design is not present. This is the case when estimating based on incomplete 

registers, of which the VAT turnover register is an example. The incompleteness of 

the data from this register is caused in part by the need to publish at a certain time 

when not all the returns have been received, and partly because of imperfect 

matching to the General Business Register (Algemeen Bedrijvenregister – ABR). 

In addition, the synthetic estimators can be used to estimate totals or averages of 

subpopulations in which the sample sizes are too small to use direct estimators per 
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subpopulation. In this situation, we are referring to synthetic estimators as long as no 

area-specific auxiliary variables are included in the vector x. As such, the synthetic

estimators are a simple type of small area estimators. 

The linear regression model assumes a quantitative target variable y. Sometimes, a 

transformation can be carried out on the target variable to make the model more 

suitable. For a target variable that is always positive, a logarithmic transformation, 

for example, can be useful. The transformed data can then be used to fit the model. 

In that case, the prediction of population totals becomes slightly more complicated 

because the fitted values must be transformed back before adding them up.

A logistic regression model is sometimes used for categorical data with a 0/1 

variable y per category. A linear regression model can be interesting in these cases 

as well. An advantage of the linear regression model is that it is easier to fit. As long 

as the fitted values i
T

i xy β̂ˆ = remain within the interval [0, 1], except for a few 

possible exceptions, the linear regression model seems to be a reasonable choice.

When using synthetic estimators for population totals or means, it is important to 

take possible selection effects into consideration as far as possible. Selection effects

are effects that cause systematic differences in the target variable between the 

sample and the rest of the population. As a result, the model (2.1.1), which is 

postulated for the entire population, becomes less useful to predict the non-observed 

part of the population; this can give rise to bias.

To reduce selection effects, it is important to expand the model with auxiliary

variables that explain these selection effects as effectively as possible. This can be 

studied by comparing the sample averages of the auxiliary variables with the 

population averages. Auxiliary variables that show large differences should be 

included in the model, unless it is clear that these do not relate to the target variable

y.

In the case of incomplete registers, selection effects can arise by means of the 

registration procedures, or through linkage with other sources. These effects are not 

always easy to identify, but it is important to study the auxiliary variables possibly 

associated with y for potential systematic differences between registered and missing 

units.

Also in the case of random samples, selection effects almost always arise as a result 

of non-response. For model-based estimation, the same applies as for weighting

sample data: that, to prevent bias, an attempt must be made to include auxiliary

variables in the model that explain both the non-response and the target variable.

Planned selectivity arises from a sample design with unequal inclusion probabilities.

The design-based methodology corrects for this by weighting with the inverse 

inclusion probabilities. In model-based methods, in this situation, the inclusion 

probability variable itself is included as auxiliary variable in a suitable way in the 

regression model.
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When using synthetic estimators for small areas, it is very important that good 

auxiliary information is available. If the auxiliary information used is not very 

predictive for the target variable, then the estimates of area means are pulled too 

much towards the general sample average. If that is the case, then the specific small 

area methods based on models with random area effects, such as described in the 

following subtheme, are more suitable.

2.3 Detailed description 

2.3.1 The linear regression model

The linear regression model is provided in equation (2.1.1). The error terms iε are 

assumed independently and normally distributed according to

),0(~ 2σε ii vN . (2.3.1)

The auxiliary variable v is also called the variance structure. The model variances vi

> 0 give the model more flexibility. As such, it is known that many variables in 

business statistics have heteroscedasticity, in which the dispersion around the linear 

predictor i
T xβ increases with the size of the companies. In this case, a certain 

positive power of the size (the number of employees or another measure) may be 

used for vi, see also Hedlin et al (2001). The values iv must be known for the 

sampling units, and furthermore, the population total vt  must be known to estimate 

variances. If there is no information that indicates that the model variances are 

different, then we use 1=iv for all units, and therefore Ntv = .

2.3.2 Fitting the model

The standard estimate for the vector of regression coefficients is

∑∑
∈

−

∈








=
si

iiii
si

T
ii vyxvxx //ˆ

1

β . (2.3.2)

Assuming (2.3.1), this estimate is optimal, in the sense that the expected square error 

(based on the model) is minimised. Note that β̂ does not depend on the variance 

parameter 2σ . This is important for the variance estimates that are discussed in 

section 2.3.5. An estimate for 2σ  is

ii
si

T
i vxy

pn
/)ˆ(

1
ˆ 22 ∑

∈

−
−

= βσ , (2.3.3)

where p is the dimension of the vector x.
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2.3.3 Model-based estimates for population totals

The estimate for the population total ty based on the fitted model and the population 

totals of the auxiliary variables is 

)(ˆˆ xntynt x
T

y −+= β , (2.3.4)

with β̂ as in (2.3.2). Sometimes, with the synthetic estimator only the term x
T tβ̂ is 

meant. For small sampling fractions n/N, this is almost the same as (2.3.4). Under 

the condition that the variance structure v is also included in the vector of auxiliary

variables x, it can be demonstrated that 0ˆ =− xy Tβ  and, in that case, (2.3.4) is 

exactly equal to x
T tβ̂ .

2.3.4 Synthetic estimators for subpopulations

The estimates for the subpopulation totals dyt ; based on the fitted model are given in 

(2.1.3) with β̂ as in (2.3.2). For small sampling fractions dd Nn / , the estimates are 

closely approximated by dx
T t ;β̂ .

2.3.5 Model-based variance estimates

The expected variance of the error yy tt ˆ− based on the model is

2

1

)()()ˆ( σ









−+−







−=−
−

∈
∑ vntxntvxxxntttVar vx

si
i

T
ii

T
xyy , (2.3.5)

where vt is the population total and v  the sample average of the variable v. We 

obtain a variance estimate of yt̂ by substituting the estimate (2.3.3) for 2σ . The 

first term of (2.3.5) is the variance resulting from uncertainty in the estimated 

coefficients β̂ , and the second term, ∑
∈

=−
ri

iv vvnt 22)( σσ , is the prediction 

variance that is always there, even if β were known.

The error variances of the area total estimates are

2
;;

1

;;; )()()ˆ( σ









−+−







−=−
−

∈
∑ dddvdddx

si
i

T
ii

T
dddxdydy vntxntvxxxntttVar ,

where dvt ;  and dd vn are the population and sample total respectively of the variable

v in area d. Estimates are obtained by filling in 2σ̂ for 2σ . If the differences 

between areas are not sufficiently explained by the differences in auxiliary variables, 

then these model-based variance estimates will often be too low. A model with 

random effects would be better in that case, but the literature also includes a 

description of alternative design-based MSE estimators, which also contain a term 

for the bias of the synthetic area estimators, see Rao (2003), section 4.2.4.
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2.3.6 Software

The model-based estimates and variance estimates discussed can be calculated in 

standard statistical software packages relatively easily. In a package with extensive 

regression and matrix facilities such as R/S-Plus, the necessary programming work 

is limited.

For a large class of models, the synthetic estimators for population totals (but not for 

area totals) correspond to the general regression estimators, see section 2.5. These

can be calculated with the Bascula weighting program, see Nieuwenbroek and 

Boonstra (2002) for instructions. However, Bascula does not offer the option to 

select a variance structure v.

2.3.7 Model selection

We limit ourselves here to linear regression models, therefore the selection of a 

model is mainly based on the selection of a vector with suitable auxiliary variables x,

and possibly a variance structure v. In addition, it is possible to transform the target 

variable into a variable that is better described by the linear regression model. Here 

we will further address the selection of auxiliary variables x.

The vector of auxiliary variables x must consist of variables that are related to the 

target variable y. The better a auxiliary variable correlates with y, the more important 

it is to include this variable in the vector x. Furthermore, it should be studied which

auxiliary variables in the sample have a different distribution than in the rest of the

population; the sample is not representative for these variables. Also if these

variables do not correlate very strongly with y, it is still better to include them in the 

vector x, to reduce any possible bias. Not all selection effects can be corrected in this 

way. The lack/presence of units in the sample s, despite the addition of many 

explanatory auxiliary variables, can still be related to the target variable itself. That 

part of the selection effects cannot be corrected for with the regression model

described here.

When expanding the vector of auxiliary variables, it is important how much a new 

auxiliary variable still adds in terms of predictive power for y and/or the sample 

selection mechanism. The number of auxiliary variables may not be too large 

compared to the sample size n, otherwise there will be a danger of “overfitting” 

which causes the model to lose its predictive power.

Including the variance structure v as one of the components of the vector x of 

auxiliary variables provides not only for the simplification of some expressions, but 

also for a certain robustness against some types of misspecification. For example, in 

homoscedastic models ( 1=iv  for all units), it is normal to have an intercept in the 

model, corresponding to a constant component in the vector x.

To select a reasonable variance structure v, the relation of residuals based on the 

model with 1=iv with relevant auxiliary variables can be studied. In the literature, 

various tests for heteroscedasticity are discussed; see for example Greene (1997). In 
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particular, variance estimates such as (2.3.4) are sensitive to the misspecification of 

v. Various variance estimators that are more robust are discussed in Valliant et al 

(2000), Chapter 5.

2.4 Example 

Using a possible application to the short-term statistics (Kortetermijnstatistieken –

KS), we hope to clarify the above description.

For the short-term statistics the turnover movements from month to month are 

estimated. A fixed sample is currently still used for this, but it is the intention that 

the Tax Administration’s VAT turnover registration will be used instead in the near 

future. The VAT turnover will replace the turnover gathered via primary data 

collection. Here, we will not address the possible differences between VAT turnover

and the actual turnover, but we will take the VAT turnover as the starting point for 

estimating turnover movements. For reasons of convenience, we will also ignore 

here the issue concerning annual, quarterly and monthly filers.

The VAT data about the relevant period is not available for all business units in the 

ABR. This incompleteness is due to a number of causes, including the fact that some 

VAT returns are not available on time, as well as the presence of matching errors

with the ABR. However, there is no known random sampling mechanism that 

indicates what the chances are that the VAT data is available for the business units. 

Design-based estimates are therefore not possible. The model-based approach is not 

dependent on a random sampling mechanism, but tries to model the reasons for the 

missing data if these correspond to the target variables.

We assume a publication cell: in other words, a subpopulation for which must be 

published, at two times, t and t – 1. We indicate the units in the population with tU

and 1−tU (subpopulations of the ABR at times t and t – 1) and the VAT turnover

variable with y at time t and z at time t – 1. The turnover movement is defined as 

∑

∑

−∈

∈==

1t

t

Ui
i

Ui
i

z

y
t z

y

t

t
O . (2.4.1)

VAT turnover data from periods t – 1 and t is available for business units

11 −− ⊂ tt Us  and tt Us ⊂ , and missing for the other units.

Both population totals in (2.4.1) can be estimated based on the model. Auxiliary

information from the ABR can be used for this purpose. An important auxiliary

variable is the number of employed persons (werkzame personen – WP). A simple 

model would then be

)WP,0(~      with WP 2
iii21 σεεββ Ny ii ++= ,

and auxiliary variables T
ix )WP,1( i= . The correlation between turnover and the 

number of employed persons does not have to be exactly linear, and it is possible to 
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experiment with various powers of WP, both in the vector x and in the variance 

structure.

Other possible auxiliary variables that can be added to the vector x are categorical

variables such as a breakdown according to business sectors or legal structure. The 

ABR variable size class (grootteklasse – GK) is derived from WP and does not add 

anything to the model, provided that the dependence of WP is well specified. This 

will often not be the case, and then it can actually be useful to add GK.

After fitting the model (separately for t and t – 1), (2.4.1) is estimated according to 

)(ˆ

)(ˆ

ˆ

ˆ
ˆ

111;11

;

−−−−− −+
−+

==
tttx

T
tt

tttx
T
tt

z

y
t xntzn

xntyn

t

t
O

β
β

. (2.4.2)

In this way, population totals are estimated in numerator and denominator each 

based on its own model, usually with corresponding auxiliary variables. These cross-

sectional estimates can potentially be further improved with the use of multivariate 

or time series models. Variances for the numerator and denominator of (2.4.2) can 

be estimated using (2.3.5). A variance estimate for the ratio can be obtained using 

linearisation.

If a publication cell has too little data to properly fit the model, then several 

(preferably comparable) cells can be combined. The estimates for the separate 

publication cells are then calculated using formula (2.1.3).

2.5 Characteristics

While this part of the Methods Series was not initially described for the situation of 

a known sample design, it is still instructive to map out the relation of the synthetic

estimator with the design-based general regression estimator for a population total in 

this situation. As stated earlier, a model-based estimator based on a linear regression 

model sometimes corresponds to a design-based estimator. The general regression 

estimator (GREG) for the population total yt for a sample obtained with inclusion 

probabilities iπ  is (Särndal et al, 1992)

)ˆ(ˆˆˆ HT
xx

THT
y

GREG
y tttt −+= γ , (2.5.1)

∑∑
∈

−

∈








=
si

iii
si

i
T
ii yxxx ππγ

1

ˆ ,

where ∑
∈

=
si

/ˆ ii
HT
y yt π  and ∑

∈

=
si

ˆ ii
HT
x xt π are the Horvitz-Thompson estimators

for the population totals of y and x. This is also called a model-assisted estimator

because implicit use is made of a model, but in such a way that the design-

unbiasedness continues to apply in approximation. A sufficient condition for the 

exact equivalence of the synthetic estimator (2.3.4) and the GREG (2.5.1) is that (1) 

iiv π= (for all i, up to a constant factor) so that the coefficients β̂  and γ̂ are the 
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same, and (2) i
T

i xc=−π1  for a constant p-vector c, for all i. The second condition

states that the variable iπ−1 must be in the vector of auxiliary variables x. This is 

certainly the case if both the constant and the inclusion probability are in x. To 

demonstrate the equivalence, we first multiply both sides of the condition (2) by 

i
T
ix πγ̂  and sum over si ∈ . This gives us

yntyxcxnt HT
y

si
iii

TTHT
x −==− ∑

∈

ˆˆ)ˆ( πγ  ,

for which the last equivalent condition (2) is applied one more time. Together 

with γβ ˆˆ = , this gives GREG
yy tt ˆˆ = . See Boonstra (2005) for these and other 

relationships between design-based and model-based estimators, and for further 

references to the literature.

One of the implications of this similarity between design-based and model-based

estimators is that we can always ensure that a synthetic estimator for a population 

total is approximatitely design-unbiased for a known random sample design: choose

the variance structure iiv π=  and ensure that both the constant and the inclusion 

probability variable (= variance structure) are in the vector x of auxiliary variables.

Conversely, it is useful to know which explicit model assumptions form the basis for 

design-based estimators. A model that poorly describes the actual target variable

will not result in a large design bias but could lead to a large design variance.

Luckily, the design variance can be kept in check by using a sample size that is 

sufficiently large.

2.6 Quality indicators

In addition to assessing the model-based variance estimates, which are a measure for 

the accuracy of the estimates given the model (and therefore are also sensitive to the 

model selection), the model itself should also be subjected to various tests.

A plot of the residuals i
T

ii xye β̂−= against the fitted values i
T

i xy β̂ˆ = often 

provides insight into the possible misspecification of the model, and potential 

improvements. In a good model, the residuals will generally be normally distributed 

around 0 and there will be no further dependence with the fitted values. Goodall 

(1983) offers a detailed description of model diagnosis using residuals.

Another strategy is to compare the different models using certain model selection 

indicators, to ultimately choose the best model. These model selection measures

weigh up model fit against the complexity of the model. Models with a relatively 

large number of coefficients do indeed have small residuals, but the predictive 

power can drop sharply due to too many coefficients. The predictive power of a 

model can also be studied in a more direct way by fitting the model on part of the 

data and then determining the errors in the predictions of the rest of the data. A 

sensitivity analysis in which a model is changed in various reasonable ways is also a 

manner of obtaining insight into the quality of the model estimates.
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Accepted measures for variable selection in regression models are AIC and BIC, 

while cross-validation is a direct measure for the predictive power of a model, see, 

for example, Hastie et al (2003). However, the subject of model selection and 

evaluation is very broad and fairly complex. Furthermore, this subject has an extra 

dimension in sampling theory, namely that of selection effects, as described briefly 

in section 2.3.7. We will not address this further here.
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3. Small area estimators

3.1 Short description

In a sample, we refer to small areas when we are talking about subgroups of the 

population that have a sample size that is too small to make reliable direct estimates. 

With model-based estimation methods, information from other areas is used to 

improve the estimate for each small area. A model assumption must be made, and an 

estimation method must be selected to make estimates using the model. 

In this subtheme, we describe the EBLUP estimator (Empirical Best Linear 

Unbiased Predictor), assuming a linear mixed model in which auxiliary information

can be included at area level. This model is known as a Fay-Herriot (FH) model

(Fay and Herriot, 1979), and is defined as

d
T

dxdy

ddydy

v+=

+=

βθθ

εθθ

;;

;;
ˆ

(3.1.1) 

where ),0(~ dd N ψε  and ),0(~ 2
vd Nv σ  for d = 1, …, m and m is the number of 

areas. The population average of y for area d is dy;θ . dy;θ̂  is a direct, design-based

estimator for dy;θ with error dε . Direct estimates are only based on information

from the area itself. We assume that the estimates dy;θ̂ are not biased, with variance 

estimates dψ . The vector dx;θ consists of area-specific auxiliary variables. The 

random effects dv have variance 2
vσ  and are independent of dε .

A linear mixed model distinguishes itself from the linear regression models such as 

they are used in the subtheme synthetic estimators through the presence of so-called 

random effects, in this case, random area effects. The variations in the area estimates

which are not explained by the auxiliary variables or the sampling errors are 

accounted for by the random effects of model (3.1.1). In most cases, the vector β
will contain an intercept µ . The effects iv+µ then form a set of area intercepts, 

with a joint underlying distribution ),( 2σµN . This gives rise to an alternative, 

hierarchical or multi-level formulation of the model. Gelman and Hill (2006) and 

Longford (2005) contain extensive descriptions of hierarchical or multi-level 

models.

Boonstra et al (2007) study a number of alternative models for small area estimates, 

including models formulated on unit level versus area level, and linear versus 

logistic models. Based on research and simulation studies (Boonstra et al., 2007), the 

approximation using a linear mixed model at area level is initially selected because 

this retains the balance between simplicity and accuracy. This method is also 

implemented in a prototype software tool (Buelens, 2007).
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In Rao (2003) the methods and formulas are described in more detail.

3.2 Applicability 

The goal is to make estimates for small areas. By definition, direct estimates for 

small areas are unreliable. The model-based method is also interesting for 

calculating more accurate estimates for small areas. This is usually the case when 

estimates for small subgroups of the population must be calculated, and when no 

account was taken of this in the sample design.

The presence of random effects in the model equations (3.1.1) ensures that areas can 

differ from one another according to the model, apart from variations caused by 

differences in auxiliary variables. To make good estimates based on the model, it is 

important that good explanatory variables dx;θ are available as auxiliary

information. If the auxiliary information does not correlate well with the target 

variable, then the random effects will gain influence, and the model will have less 

predictive power. It is therefore explicitly expected that the areas are equivalent. If 

areas differ very strongly, and these differences are not accounted for by the 

auxiliary information, this results in greater random effects. The selection of good 

auxiliary variables boils down to selecting a suitable model; this process is known as 

model selection. This aspect is briefly discussed in sections 2.6 and 3.6.

For model (3.1.1), the auxiliary information only has to be available at area level. If 

the auxiliary information is available at unit level, then sample averages dx can be 

used instead of population averages as auxiliary variables in (3.1.1). This allows for 

better correction for non-response; see Boonstra et al (2007).

3.3 Detailed description

3.3.1 Linear mixed model at area level

We use an FH model, a linear mixed model at area level, as defined in (3.1.1). The 

statement (3.1.1) can also be written as 

dd
T

dxdy v εβθθ ++= ;;
ˆ . (3.3.1)

When fitting this model, we use direct, design-based estimates dy;θ̂  and variance 

estimates dψ . The estimator dy;θ̂ can be a Horvitz-Thompson or a regression 

estimator, for example.

Because we are dealing with small areas, the variance estimates dψ can be unstable. 

A solution is to pool these estimates. If dy;θ̂ is the sample average area d, then the 

corresponding estimate of the design variance, assuming an unrestricted random 

sample, is
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When pooling, we calculate the sample variance for areas together, or even all the 

areas together. In this last case, we calculate a pooled sample variance,

∑
=

−
−

=
m

d
ddpooled sn

mn
s

1

22 )1(
1

,

and use this instead of the area-specific variances 2
ds  in the above expression for 

dψ .

The model variance 2
vσ is estimated using the Fay-Herriot moment estimator (Rao, 

2003). As the starting point of this method, it is noted that

( ) pmhEE v
d vd

T
dxdy −==











+
−

∑ )(
)~ˆ(

2
2

2
;; σ

σψ
θθ β

(3.3.2)

where m is the number of small areas, p is the dimension of the vector of auxiliary

variables dx;θ , and








 +






 +== ∑∑
−

d
vdy;dx;d

d
vd

T
x;dx;dv )σ/(ψθθ)σ/(ψθθ)(σββ 2

1

22 ˆ~~
. (3.3.3)

The estimate 2ˆvσ is obtained by the iterative solving of 

pmh v −=)( 2σ . (3.3.4)

We use 0)0(2 ==a
vσ as the starting value, and calculate

( ))(
)('

1 )(2
)(2

*

)(2)1(2 a
va

v

a
v

a
v hpm

h
σ

σ
σσ −−+=+ (3.3.5)

where ∑ +
−

−=
d vd

T
dxdy

v

β
h

22

2
;;2

* )(

)~ˆ(
)('

σψ
θθ

σ is an approximation of the derivative of 

)( 2
vh σ .

This iterative process converges quickly, usually in less than ten iterations. If no 

positive solution is found, then 2ˆvσ = 0 is used. In this last case, there are no random 

effects and we will obtain a synthetic estimator at area level.
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The bias and the variance of this estimate are indicated by B( 2ˆ vσ ) and V( 2ˆ vσ ) 

respectively, where

3
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2

122 )ˆ(2)ˆ(
−

− 






 += ∑
d

vdv mV σψσ . (3.3.7)

3.3.2 Empirical Best Linear Unbiased Predictor (EBLUP)

The Empirical Best Linear Unbiased Predictor (EBLUP) estimator based on model 

(3.3.1) is indicated by

βT
dxddyd

eblup
dy

ˆ)1(ˆˆ
;;; θγθγθ −+= (3.3.8)

where


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
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d
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1

;;
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~ˆ θθγθθγσ )( (3.3.9)

and

2

2

ˆ

ˆ

vd

v
d σψ

σγ
+

= . (3.3.10)

The EBLUP estimator (3.3.8) is a weighted combination of a direct estimator dy;θ̂

and a synthetic estimator βT
dx

ˆ
;θ . The direct estimator is given a large weight dγ

(3.3.10) if the variance dψ is small. In other words, the EBLUP estimates are 

mainly based on the direct estimates when these are accurate, and on the model-

based estimates in the other case.

The mean square error (MSE) of the EBLUP estimates (3.3.8) are estimated as

)ˆ(2)ˆ()1)(ˆ()ˆ()ˆ( 2
3

2
2

222
1; vdvddvvd

eblup
dy ggBgmse σσγσσθ ++−−= ,

(3.3.11)

where

ddvdg ψγσ =)ˆ( 2
1 ,

dx;
T

dx;dx;
t

dx; θσψθθθγσ
1

222
2 )ˆ/()1()ˆ(

−








 +−= ∑
d

vddvdg ,
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)ˆ()ˆ()ˆ( 23222
3 vvddvd Vg σσψψσ −+= .

The first term, dg1 , is the inherent prediction variance that would also be present if 

β  and 2
vσ were known; dg2  and dg3 are the contributions from the uncertainty in 

β  and 2
vσ  respectively.

3.3.3 Prototype software SmallAreaEstimator

The model described in section 3.3.1 and the EBLUP estimator described in section 

3.3.2 are implemented in a prototype software tool, the SmallAreaEstimator

(Buelens, 2007). This tool is a plug-in for SPSS and offers the user a graphical user 

interface that allows small area estimates to be made in the SPSS software 

environment. 

3.4 Example 

An example from the Dutch Labour Force Survey (Enquête-Beroepsbevolking –

EBB) is the estimation of the annual employment figures at municipal level. There is 

a demand for these figures, but the design of the existing EBB sample does not 

allow reliable estimates to be made at this level. For many municipalities there are 

insufficient observations, or for some municipalities even no observations at all. 

As an example, we use the CAPI sample of the EBB from 2005. This concerns 

86,589 people, and 454 municipalities. We use the SmallAreaEstimator (SAE)

software tool referred to in section 3.3.3. The direct estimator implemented in the 

current version of the software is the unweighted sample mean. With SAE, we 

calculate these direct estimates dy;θ̂  and the accompanying variances dψ . The 

variation coefficient vc = dyd ;
ˆ/θψ can be used as a measure for acceptable 

accuracy. If we use the maximum value for the vc of 0.2 as a criterion, then the 

direct estimates for only 38 municipalities are sufficiently accurate. 

As auxiliary information for the model-based estimates, we use the number of 

people registered with the Centre for work and income (Centrum voor Werk en 

Inkomen) in each municipality, and the population sizes are split into three age 

groups. Using SAE, we calculate the EBLUP estimates and the corresponding

MSEs. The EBLUP estimates are sufficiently accurate for 437 municipalities (they 

have a vc smaller than than 0.2). 

This example shows that higher accuracy can be achieved by using the EBLUP 

estimator instead of a simple direct design-based estimator.  

3.5 Characteristics

Model-based small area estimates have a smoothing effect. The distribution of the 

estimates will have a smaller spread than the distribution of the actual values. 

Consequently, high extreme values will often be underestimated, and low extreme 
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values will be overestimated. It is therefore possible that small area estimates that 

are generally assumed to be good will not be good at all for specific individual areas. 

This situation will arise, for example, in atypical areas: areas that, for whatever 

reason, also differ essentially from all other areas and for which these differences are 

not explained by the auxiliary variables used.

The EBLUP estimator (3.3.8) is a combination of a direct and a synthetic estimator. 

Asymptotically, the EBLUP is design unbiased because (3.3.8) for large nd

approaches the direct estimator, which is design unbiased.

For areas that are well represented in the sample, the direct estimates will be 

accurate, and the weights dγ  (3.3.10) large. In other words, the EBLUP estimator

for these areas is mainly, and sometimes almost completely, based on the direct

estimator. It is therefore also important to select a good direct estimator, also 

because the direct estimates are used to fit the model. The prototype described in 

section 3.3.3 currently still uses the unweighted sample mean as the direct estimator,

and therefore does not offer alternative options. It is expected that subsequent 

versions of this prototype will offer better options, by including weights. In this way, 

regression estimators will also be able to be used as direct estimators in the software,

for example, using weights calculated in Bascula.

3.6 Quality indicators

Initially, one can examine the standard errors and the variation coefficients of the 

model-based estimates compared to those of the direct estimates. However, the 

standard errors of the model-based estimates are also estimates themselves based on

the model, and thus must be dealt with carefully. Thanks to the random effects in the 

model and the asymptotic unbiasedness of the design of the EBLUP estimator, they 

are however reasonably robust. 

There are a number of other measures and tests that can indicate whether the 

selected model and the accompanying estimates are plausible; see section 2.6. The 

study into these measures and tests for model selection is still being conducted at 

DMH.
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