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SAMPLING DESIGNS FOR SHORT PANEL DATA

By Bianca L. DE Stavora'

Some aspects of the design and analysis of shart panel data are cansidered. 1t is assumad
that each individual may be at any instant in one of two states, far example emplayed and
unemployed, and that individuals may switch from one to the ather state. Alternative ways
of observing individuals in discrete time are compared via the Fisher information matrix.
The effect af the observatianal interval on the efficiency of the estimation is stressed and
aptimal time intervals for alternative sampling schemes ate computed. A generalization to
a madel with covariates is outlined.

1. INTRODUCTION

PANEL DATA are becoming increasingly common in economic and sacial studies
(see Heckman and Flinn (5], Lancaster (6], Lancaster and Nickell {7]}. In this
paper we show that it is possible to design equivalently efficient sampling schemes
for the analysis of two-state Markov processes, so that survey costs may be
controlled. If, for example, the aim of a study is the estimation of the proportion
of time spent in unemployment, criteria are given to balance the amount of
information to be recorded at each time point {e.g., “Are you unemployed at
present?” or “How many unemployment spells did you experience over the last
year? and Are you unemployed now?"), the dimension of the sample size, and
the interval between observations in order to achieve a desired degree of efficiency.

Consider a population of individuals each of whom is at any instant in one
of two states, labelled 0 and 1. For example, the states might represent unemploy-
ment and employment. We assume that individuals switch from time to time
from one state to the other and, initially, take the individuals as homogenous:
the dependence of the transition rates on explanatory variables is an important
issue and will be considered in the last section. We assume also that the system
is stationary and, at least in the initial analysis, that the times spent in state 0 or
in state 1 are independent exponentially distributed random variables with
parameters po and py, respectively. Thus the equilibrium probability of being in
state O is p/{pot p1).

Suppose that a random sample of » individuals is chosen. Ideally, we should
monitor the individual transitions from one state to the other separately for each
individual continuously over a period of time, say T. When, as in most empirical
studies of social behavior, this is not feasible, observations are made at discrete
time points. We assume that k observations are made for each individual in the
sample, A units of time apart, where (k—1)A = T is the observed period. While
in practice 4 is not necessarily constant, for simplicity it will be held so throughout
this paper. Two questions arise: {a} what kind of information do we need at each

[ would Like to express my gratitude to Prafessor D. R. Cax for his guidance throuzhaut the
preparatian of this paper and ta Professor S. Nickell for stimulating discussions. 1 wauld also like
ta thank a referee far helpful comments. The wark, supported by Consiglia Nazionale delle Ricerche,
ltaly, was carried out at Imperial Callege, Londan,
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point-in-time observation to obtain estimates with a desired degree of accuracy
{for given-n); and, in the same context (b} what is an optimal value for A.

We restrict our discussion to the case of small k. Among the possible ways of
obtaining information we will discuss two in particular: (1) the recording of the
states occupied by each individual at each sampling point; (2) as in (1), with the
inclusion of some qualitative information about the process development over
each 4 interval, e.g. the number or the sequence of changes of state.

In order to determine when survey designs more complicated than (1) are
worth considering, we compare the estimating efficiencies achieved by these
ohservational schemes with: (3} the continuous time recording of the individual
processes aver the whole period T.

In Section 2 the likelihood functions far (1)-{3) are computed; in Section 3
the asymptotic relative efficiencies (ARE’s) are discussed in the light of different
objectives and the time interval effect is explicitly considered. Section 4 generalizes
the results to the case of heterogeneous individuals.

2. SCHEMES CONFIGURATION

The assumptions that the population is homogeneous and that the waiting
times to switch into one state or the other are independently exponentially
distributed imply that for each individual who is in state s at time ¢ the hazard
function is affected neither by the length of time already spent in that state nor
by the previous sequence of transitions between the two states.

Denote by X (1) the state occupied by individual i at time r. Then, for k=2,
the sampling scheme (1) will record for each sampled individual one of four
possible sequences: Coo=(X{(0) =0, X(4)=0); (4= (X(0)=0,X(A)=1};
C,=(X(0)=1,X(4)=1); Co=(X(0)=1,X(4)=0}. The associated prob-
abilities are {Cox and Miller {3, p. 172]):

P(Coo) = [ {Le—rpowtlﬁ_}_L}’

pat o Lpatp, Aot P

P(C01]= Py { Po __Po e—(.aota,lﬁ},
pet o Lpetp patm

(2.1)

P(C,) = Pa [Le—{pJn]}ﬂ_’_L}’
pat oy Lpot o 2ot 0

P(Co) = Po { pL__ A E"("O“"M}‘
pot o Lpator pPet e

where the equality of P(C,,) and P(C,,) derives from the time reversibility
inherent in this Markov process. In each equation, the first factor is the equilibrium
probability for the initial state and the second factor correspands to the condi-
tional prohability of being or not being in the same state at the end of the 4 interval.

The extension to the case of 3 or more point-in-time observations is straightfor-
ward. When k=3 the probabilities associated to each outcome at time 24,
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conditionally on X{4), are exactly equal to the conditional probabilities in the
equations (2.1). Thus the full probabilities associated to the 8 possible outcomes
are computed.

Similar results are abtained for the sampling scheme (2). As a special case, let
m equal one if there has been at least one change of state in the time interval A,
m =0 otherwise. Then when k=2 we define 6 possible outcomes: Ego=
(X(0)=0,X(4)=0,m=0); Ege; =(X(0) =0, X{(4)=0,m=1); Eoip=
(X(0)=0; X(4)=1,m=1). E) o E,i1; Ewo; are similarly defined with state 1
in place of state 0 and vice-versa. The associated probabilities, factorizable as
before in equilibrium and transition probability components, are:

p _
P{Egq) = L {e A,
Aot oy

P(EOO,I] = P(Co) — P(Eoo.o)

:L[L_e—%hr Pa e-(w.m},
fot oy

Pat A pot gy
. 1 Fa Po —(p.to, 14
(2.2} P(Es ) =P(Cy) = [ - e Pt }
oLt T oot o, Lpatpr potay
p _
P(E, o) =———{e "},
pat p,

P(E||,1]=P(C11}_P(En,o)

__Pa {A_ e f1A +L e—(aota,ld},

pot o Lpgt o patp

2o 2 A1 —(p, ta A

P(Eio.) = P(Cio) = [ et }
o l potpiLpster patp

Again note the identity P{Eq )= P(E o). For k=3 the same remarks as
before are applicable here for computing the probabilities associated with the 18
possible outcomes. In general, for any value of k the computation consists of
multiplying the equilibrium probabilities by a sequence of transition probabilities,
the initial definition of which is given by the terms between { }in (2.1) and (2.2).

On the basis of these results the log-likelihood functions I, and [, for the
observational schemes (1) and (2) are computed. For k=2,

1 I
(23) 4L=1 ¥ n In{P(C,)},
r={ 5=
where n,, represents the number of observed transitions between state r and state
s over the A interval. Indeed L, has a similar form. The log-likelihood for scheme
(3) includes terms for the equilibrium probabilities of the individuals starting in
state 0 and in state 1 and terms for the probabilities associated with each spell
spent in a state. These derive from pg e and p, ¢ ™, the density functions for
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completed spells in 0 of length ¢ and in 1 of length ¢'. Incomplete spells contribute
via e %', e™"' respectively. With a similar notation to (2.3) we obtain:

(24) L={(n+n) In pg+{Ree+ ng ) In p, —nIn (pg+ p))}

", m,
+[molnpo—po Y atminpg —p ¥ r?},
i=1 i=1

where m, and m, represent the total number of completed spells spent by the n
individuals in state 0 and state 1 and {(¢,,..., tng), (4], .., r’mj-) are the lengths
ol the completed and censored spells. Note that 3 ,+Y t/=nT.

If the observed process is correctly specified as an alternating Poisson process,
then the Fisher information matrices associated with (1), {2}, and (3) are the
expecied values of the negative of the second derivatives of the log-likelihoods.
The information matrices relative to the first and second scheme are easily
derivable when regularity conditions hold {Cox and Hinkley [3, p. 1071}. Scheme
(1}, for example, has information matrix,

3P(C) M}
api apj )
The computation of the information matrix of scheme (3) involves instead the

expectations of the number of transitions out of each state, as well as the
equilibrium probabilities. The result is

[(l) :{Iu(l}} = {Z [P(Crs)]_

E{mg)+ E(notn,) n 3 n
13) = % (ot o1’ (potp)’?
B n E(m )+ E(ng+ny,) #
(Po"'ﬂx)z Pf (pot 1)

where  E(mg) = E(m}=pop14/(patp,} and  E(ng +ne) =np/(pet o}
E(ng+n) =npe/(ps+p1)

3. COMPARISON OF SAMPLING SCHEMES
3.1. Asymptotic Relative Efficiencies

In designing a survey we may be interested in some or all of the following
objectives: (a} the estimation of the proportion of time spent in state 0, say
A=p/(p;+p); (b} the estimation of one of the rate parameters, say pg, or
equivalently the corresponding mean sajourn time 1/ py; (¢) the joint estimation
of all the parameters in the complete model, in this case both pq and p,.

For each of these abjectives we compute the A.R.E.’s of the schemes (1) and
{2} with respect ta (3), the formal definition being given in the Appendix. The
factors p,d and p, 4 in the ARE contour pictures are to be interpreted as ratios
between the time interval A and the mean sojourn time in state 0 and state 1
respectively, so that the interval (0.1, 1.5) carresponds to the cases of the means
being between  and 10 times A.

Figure 1 gives the ARE contour levels for the estimation of A, the ARE's being
defined as the ratio of the variances of the estimators. The dotted lines represent
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Ficure |—ARE's of estimates of A based on scheme (1) vs. scheme (3} and based an scheme (2)
vs. scheme (3).
--- (1) vs. (3)
— (2} vs. (Y

the ARE levels for the estimator derived from scheme (1) and the continuous
lines the ARE levels for the estimator derived from scheme (2). Both decrease
far increasing values of p,4 and p A or, equivalently, the ARE’s decrease for
decreasing mean sojourn times in state 0 and 1, for a given interval 4. Since
var (1) depends symmetrically on the two parameters (see Appendix), both ARE’s
hehave symmetrically about the axes.

Similarly, Figure 2 gives the ARE contour levels for the estimates of p,. Here,
however, the two schemes perform quite differently. Take A =1: the parameter

18

,OIQ —
&)
)

00 G2 04 06 08 10 12 14 16
pGA—h-

Figure 2—ARE's of estimates of p, based an scheme (1) vs. scheme (3] and based on scheme (2)
vs. scheme {3).
--- (1) vs. (3}
— (2} vs. (3)
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region for which scheme (1) gives an estimate of p, at least 70 per cent efficient
covers anly a small area of the (py, o) plane. The equivalent space defined by
scheme (2) includes instead many (p,, p,) values. Furthermore scheme (2) allows
pi1,the nuisance parameter, to be large relative to pgand still allows the achievement
of a given level of ARE. In other words, when the mean sojourn time in state 1
is considerably smaller than the mean sojourn time in state 0, scheme (2) increases
its efficiency relatively to scheme (1).

Figure 3 gives the generalized ARE’s. They are defined as ratios of the square
roots of the asymptotic generalized variances. Again, the loss of efficiency due
to collecting discrete time data instead of continuous time data increases steadily
with the rates. Here, however, the symmetry about the axes is recavered.

When k> 2 the contour levels in Figure 1-3 are smoothly pushed upwards,
showing the ARE improvement of the systematic sampling schemes when the
total number of discrete observations increases, when T is fixed.

3.2. The Effect of the Time Interval

The comparison has so far been conducted assuming 4 fixed. When 4 varies,
i.e. when the observations are, say 4’ = h4A units apart, the transition rates are
reparameterized accordingly. Further, the joint information matrix is now k'’
times the ariginal, #” being the square value of the Jacobian of the transformation
(see Cox and Hinkley [3, p. 130]). For given values of the parameters it is therefore
possible to find values of h which minimize the generalized variance ar, otherwise,
one of the variances,

Table I, for instance, gives the factors, labelled h, and h,, which minimize
var {4o) for scheme (1) and (2} and for a selection of parameter values. As one
would expect, decreasing values of the mean sojourn times in the two states are

16
1-4
12
10
Q-8

PA -

Q0 02 04 06 08 10 112 14 16
pOA-—r

FIGURE 3—Generalized ARE's far estimates of {g,, p,) based an scheme (1} vs. scheme (3) and
based an scheme (2) vs. scheme {3).
caaf1) vs. (3)
— (2} vs. (3]
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TABLE [

FACTORS h, AND h, WHICH MINIMIZE VAR{ Gy} FOR A SELECTION OF PaRA-
METER VALUES?

Balanced mean [Inbalanced mean
SQOULT timnes sajaurm times®
- ey, LN Ay Lh hy
05 20.0 8.16 31.23 4.84 15.56
14 10.0 4.08 15.62 242 1278
20 5.0 204 7.81 1.21 6.38
40 25 1402 in 60 119
B0 1.7 68 2.60 40 213
80 1.3 .51 1.95 30 1.58
1.00 1.0 4] 1.56 .24 1.26
1.50 i 27 1.04 16 £4

* The term A refers ta scheme (1] and the term A, to scheme (2],
Y The values are computed far p, =255,

associated with smaller optimal time intervals, the rate of their decrement being
exactly the same as that in the means. On the other hand, the values h, and A,
are fairly difterent, with the latter allowing for much longer intervals hetween
observations to achieve the smallest variances. This is even more noticeable when
the mean sojourn times in the two states are not balanced.

Slightly different considerations apply to var (k). When the first scheme is
considered (Cox [1, p. 891),

_ Pobr _
2(P0+Pl)2 {1+exp{ (potp)dl).

The first term is exactly the binomial variance corresponding to two independent
observations with P(success) = A while the second term collapses to 1 as 4 - oq,
Then the further apart are the observations, the smaller is var (i). The same is
true for the second scheme. Of course these remarks refer to a given total number
of observations: the cost in a real study may depend in a rather complex way on
both the number of observations and the total period of abservation.

This leads to some broad conclusions. When interest lies in overall indicators,
like the proportion of time spent in one of the two states and no continuous time
information is available, the best strategy is to observe the process either through
scheme (1) or scheme (2} at time points sufficiently distant to he considered
independent. If, on the contrary, interest lies in the structural parameters, observa-
tions which include some qualitative information lead to better estimates and an
appropriate—but not necessarily accurate—choice of 4’ is important. This has
been shown for a very simple case of additional qualitative information: any
more informative scheme than (2) would improve the efficiency. Furthermore, if
some a priori knowledge of the parameters size is available, we can achieve more
efficient estimates of p, through the results in Table I or similarly, more efficient

joint estimates of {pg, p1), when a similar argument is applied to the generalized -
variance.

var (A) =
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4. HETEROGENEOUS POPULATIONS

The results of the previous sections can be extended to the more interesting
case of a nonhamogeneous population. Very often in fact, the transition rates
between the two states depend on explanatory variables z, fixed for each
individual, Denote by po(z), p;(z) the hazard functions associated respectively
with state 0 and state 1. The mean sojourn times, [ po(2)] ' and [p,{z)]7", therefare,
are not generally the same for all the individual processes. To represent the effect
of z on the transition densities, we consider the particular forms py(z) = ay, ?
and p,(z) = a, e®¥, where the parameters o = (ag, a,) define the baseline func-
tions carresponding to a process with z =0 and the second terms represent the
multiplicative effect of z in a log-linear farm. For simplicity we restrict attention
ta the case of just one covariate, z, and compute the log-likelihoad functions for
the parameters ¢ = (ay,a,, Bq, B,) associated with the three schemes, as before.
In order to compare the schemes we consider the asymptotic covariance mateix
of ,@A = (ﬁo, ﬁl] near 8 =(0,0). This is defined by the bottom right-hand corner
of the inverse of the joint information matrix. Similarly to Section 3.1 we compare
the efficiencies in estimating one ar both the coefficients 8, which are now the
parameters of interest. Figure 4 gives the contour levels of estimates for Bo when
the model is overspecified, i.e. when z does not influence the transition densities.
The same remarks as for Figure 2 are valid here.

The generalized ARE’s for the vectar §= (ﬁa, ,6’\1] are defined as ratios of the
square roots of the asymptotic generalized variances of ,@A:(,é‘@, ,él); see the
Appendix. Figure 5 shows the results. Again, they confirm the previous findings
about the efficiency gain achieved when same additional information about the
individual realizations is included in the model specification. In general, the
ARE's are not affected by var (z) or by its distribution.

16
14
12
10

oy d =
[
[»4]

00 &2 04 06 0B 10 12 14 18
agd —=-

FIGURE 4 —ARE's of estimates af A, when (8,, #,) =(0, 1) based an scheme {1) vs. scheme (3) and
based on scheme {2} vs. scheme (3}, z~ N (0, 1).
—o- {1} vs. (3
— {2} vs. (3)
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FIGURE 5—Generalized ARE’s of estimates of (g, 8;) when (fq, 8,) = (0, 0) based on scheme {1
vs. scheme (3) and hased on scheme {2) vs. scheme (3}, z~ N (0, L)
- (1) vs. (3)
— (2) vs. (3)

The results presented here apply to alternating Markov processes in which
transition rates do not vary with time. Nevertheless, when realizations are observed
only aver a short period of time and the process is locally stationary, the
assumption of exponential sojourn time distributions in the two states may be
suitable and the criteria described in Sections 3 and 4 would apply.

Medical Research Council Centre, Cambridge, England

Manuscript received May, 1984; final resision received September, 19835,

APPENDIX
DEFINITION OF THE ASYMPTOTIC RELATIVE EFFICIENCIES

We define here the ARE's on which the sampling schemes (1) and (2} are compared.
The ARE's far the estimation of the parameter A =p /{p,+ p,) are defined as

ARE, (1:3) = var {A(3}}/var {A(1}},
ARE, (2:3)=var {A(3)}/var {23,

respectively for scheme (1) and scheme (2}, i(i) being the maximum likelihood estimate derived via
the informatian collected by scheme (i}, i=1,2, 3. In general,

var (A} ={(ap/ar) Iap/an)}™"

_ phvar (B} ¥ pt var (o) —2p0p, OV (g, A1)
(ﬁq + 91}4

»

where [ is the Fisher informatien matrix for p = {pg, p1). The ARE'S for L are therefore defined in
terms of the elements of the covariance matrices, /™" when p= fi
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Similarly, when (i) is the Fisher information matrix relative to scheme (i), (i =1, 2, 3), and (i}
the jth element of the diagonal of J~'({),
ARE  (1:3) =var{gg(3)}/var {F{1}} = I3}/ 1 (1),
ARE ,(2:3) = var {#q(3)}/var {o(2)} = I''(3)/ 1''(2).
The generalized ARE's are defined as ratios of the square roots of the information matrices
determinants:
Gen. ARE (1:3) =|J(3)]'72 - [F(1)] 72,
Gen. ARE,(2:3)=|1(3)|™'/* - |1(2)]'/2,

Finally, in the heterogeneous population case, when [, denotes the infarmation matrix for § =
(g, @, Bg, B} and [ 5 the information matrix for A =(fq, 8.},

ARE, (1:3) =var {8,(3) M/ var {8,000 = I¥ ()7 1301,
ARE, (2:3) = var {B4(3)}/var {B,(2)} = IF BV IF(2),
and

Gen. ARE,(1:3) = |1,(3)|"/* | [,(1[""?,
Gen. ARE(2:3) = [1,(3)[™/2 - [1,(2)™.
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