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MOBILITY INDICES
IN CONTINUQUS TIME MARKOV CHAINS

By Joun GeEwekg, ROBERT C. MARSHALL, aND GaRY A, ZARKIN'

The axiomatic derivation of mability indices for first-order Markov chain models in
discrete time is extended ta continuous-time models. Many af the logical inconsistencies
among axioms noted in the literature far the discrete time models da not arize for continuous
time madels. It is shown how mobility indices in continuous time Markov chains may be
estimated from observations at twoe points in time. Specific attention is given to the case
in which the states are fractiles, and an empirical example is presented.

KEYWORDS: Mability indices, Markav chains, embeddabilicy.

1. INTRODUCTION

MARKOV CHAIN MODELS are widely used in the social sciences to describe the
mavement of agents across states. If there are n states a Markov chain model
has n® parameters p;;, arranged in an n x # transition matrix P, indicating the
probability that an agent in state i one period will be in state j the succeeding
period. Estimates of the p;; from survey data can be used to address a variety of
questions. Given two years of panel data on the income of young females, let
state 1 in each year be an income below the poverty line. Then by separating the
sample into blacks and whites p,, for the two groups can be compared. However,
to address such questions as *‘are white young females more maobile than black
young females?” requires the comparison of the matrices P for the two groups.
Questians of this nature have led to the development of mobility indices, which
map the matrix P into a scalar M(P). Consider two transition matrices, P, and
P,. Ideally a mobility index should yield the ranking M(P,)> M(P,} for any P,
and P, for which reasonable individuals agree that P, implies greater mobility
than P,. Since the concept of mability comparisons is vaguely defined the problem
of comparing mobility indices is ill posed, unless the criteria inherently used by
reasonable individuals in the comparison of transition matrices can be quantified.
An attractive, systematic approach is to postulate properties which a reasonable
index of mobility ought to satisfy, and then evaluate proposed indices against
these properties (as Lovell (1962) did for seasonal adjustment procedures).
Shorrocks (1978) took this approach, but found logical inconsistencies between
apparently plausible criteria and left unresolved the question of whether the
criteria are consistent for an interesting subset of all possible transition matrices
P. Alternative indices of mability were also discussed in Shorrocks (1978) and
evaluated against these criteria.

In this paper we extend Shorrocks’ treatment in several ways. We begin, in
Section 2, by suggesting that his criteria fall into two logically distinct categories;
criteria within each category are logically consistent but there are several conflicts
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across categories. There are two corresponding categories into which many indices
of mobility (including all of those considered by Shorrocks (1978)) can be
grouped, and indices are consistent with the corresponding class of criteria and
generally inconsistent with the other class of criteria. For transition matrices with
nonnegative, real eigenvalues there are no logical conflicts among any of the
criteria and many (but not all) indices satisfy the criteria in both categaries. In
Section 3 we turn to issues of aggregation over time. Many models, and most
discussions of maobility, are conditioned on a stipulated time interval. In many
applications (e.g. intergenerational occupational mobility) this is natural but in
others (e.g., labor force participation and employment status) it is not, and
Shorrocks (1978) considered freeing indices of mobility from an arbitrarily chosen
time unit. We define indices of mobility for continuous time models, and show
that these can be estimated very easily from observations at two discrete points
in time. Throughout, we indicate the simplifications that result if the states are
defined as fractiles: this can be done if the underlying data are continuous, like
income or wealth, but not if they are discrete categories like labor force participa-
tion or employment. A continuous time fractile model is developed in Section 4.
It is conceptually attractive, because it leads to a one-dimensional mobility
function of order n, intermediate between a mobility index (dimension zero} and
the transition matrix itself (dimension two). It imposes embeddability as a testable
restriction and is much easier to estimate than less restricted models. This madel
is applied in an empirical example presented in Section 5. The ﬁnal section
discusses some issues for future research.

2. MOBILITY INDICES IN DISCRETE TIME

Let P be the n X n matrix consisting of the p;;, and let 7, denote the proportion
of the papulation in state j at time ¢, given the initial distribution (mq, j=1,..., n)
at time ¢ =0, If the vector of population proportions g,—(m[, ceey 7r,,,) then
T P=7iP' Let 7°=1im o 7 if the limit extsts then %= z4lim,, P If
this limit is the same for all 7,, denote 7= 7°. In the latter case, by setting m,
to the respective columns of an n x n identity matrix we see that lim,_ ., P =7'=
P where ¢ is an nx1 vector of units. We denote the eigenvalues of P by
Af, ..., A, ordered so that [A,[=- - =]|A,|, and define the nx n matrix A =
diag'(x;,..., A,).

A mobifity index is a function M(P) mapping P into a scalar, and without
lass of generality we shall take these to be normalized by M{(I )=0. Shorracks
(1978) proposed that mobility indices be evaluated according to several criteria,
which we shall cast into three categories. Persistence criteria stipulate that an
index should be consistent with some simple, intuitively appealing interpretations
of the transition matrix P Monotomcny (M) requires that M{P)> M(P*} if
py=pi for all i # j, and p,; > p¥ for some i # j: The ctiterion of immaobility, (I}
stipulates M (P) >0, and under strong immobility (SI}) M(P)>0 unless P=I.

Convergence criteria stipulate that M (P} should establish an ordering among
transition matrices P that is consistent with the rate at which the multiperiod
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transition matrices P* converge to the limiting transition matrix P'. These criteria
apply only to those P for which P' exists, i.e., thase for which |A;] < 1.7 In the
limit, an agent’s conditional probability of occupying a state in the next period
is the same as the unconditional prabability. Perfect mobility (PM) requires
M(P")= M(P) for all P, and strong perfect mobility (SPM) requires that the
inequality be strict unless P = P'. These criteria are motivated by the axiom that
perfect mobility is achieved as the number of transitions becomes infinite, and
by the related observation that all P' have identical rows and so the probability
of moving to any state is independent of that originally accupied. The terminalogy
-is due to Prais (1955). If it is axiomatic that mobility increases with the number
of periads, then we may add to Shorrock’s list the criterion of monotonicity in
period length (MPL), M(P*) = M(P')if k> j; strong monatonicity in period length
(SMPL) requires that this inequality be strict if P # P".

Temporal aggregation criteria remove the influence of the length of the basic
time period on comparisons of maobility. The idea that comparisons of rates of
canvergence should not be reversed by changes in the basic time unit suggests
the criterion of period consistency (PC): if P and P* are two transition matrices
and M(P)= M(P*), then M{P*)= M(P**), for all integers k> 1. Shorrocks
suggests that if the index explicitly accounts for the length T of the basic time
unit, g0 that it has the form M({FP; T), then we might wish it to satisfy the criterion
of period invariance (PI}, M(P; T) = M(P*; kT). (Shorrocks adds normalization
(N}, M(P")=1; this seems to us less substantive, and in any event all measures
consistent with convergence criteria considered here also satisfy N.)

Prais {1955) showed that the mean length of stay in state i is 1/(1—p;), and
Shorrocks (1978} suggested the inverse of the harmonic mean of these lengths,
scaled by n/(n—1), as an index of mobility:

Mp(P}=[n—tr {P}]/(n—1).

Shorrocks noted that Mp(P) satisfies I, S, and M. Hence the persistence criteria
are internally consistent. Bartholomew’s index,

My(P)=Y m T pyli-jl,
1 4
and the unconditional prabability of leaving the current state (scaled by n/(n — 1))

My(P}= "z m(l1—py)/(n—1)

are similar. However these measures violate M, as indicated by the counter-
example '

90 .05 .05 90 .05 .05
(21) P=|.09 46 45| P*=|.05 .50 .45]|
09 45 46 02 45 .53

*We appreciate an anonymaous referee bringing the sense of this restriction to our attention. It
was not impased on the PM and SPM criteria in Shorrocks (1978). :



1410 ' JOHN GEWEKE, ROBERT C. MARSHALL, AND GARY A. ZARKIN

M (P)=.3316, M, (P*)=.3855,
Mg(P)=.3789, Mpy(P*)=.4060,
m =.4871, =F=.2579,
m,=.2577, =w¥=.3651,
my=.2552, w¥=.3770.

(Although the off-diagonal elements P2 and py, decrease in going to P*, this
diminishes the probability that an agent in states 2 or 3 will enter state 1, from
which exit is difficult. Consequently My (P) and Mp(P) increase, and it may be
seen that this comes about through changes in the unconditional probabilities
m;.) Since Mp(P}= M, (P)=0 for any P with a single absorbing state, e.g.

S0 300 20
(2.2) P=]30 .50 .20 |
00 00 1.00

My and M, are inconsistent with SI as well.

It is evident that any function M{P) which can be expressed as a strictly
mornatonically decreasing function of the moduli of the eigenvalues of P will
satisfy all of the convergence criteria, and consequently these are internally
consistent. The simplest such index is the eigenvalue index

ME(P)=(n—§__|Aj|)/(n—1).

This index is consistent with T and violates SI only if all eigenvalues have modulus
1. Consequently, I, SI, and the convergence criteria are logically consistent. Other
indices involving eigenvalues include the determinant index '

Mp(P)=1-|det (P),
suggested in this form in Shorrocks (1978); and the second eigenvalue index
My(P}=1-[1,|

advocated in Sommers and Conlisk (1979) and closely related to the measure of
half life discussed in Shorrocks (1978). Observe that Mp(P) violates SPM if
A, =0 and M,(P) violates ST if | A,|=1.

There are logical inconsistencies across the persistence and convergence
categories: for example M and PM are logically inconsistent as noted in
Shorrocks (1978). However if all the eigenvalues of P are real and nonnega-
tive, Mp(P)= Mg (P} since the trace of a matrix is the sum of its eigenvalues.
Were there logical conflicts among the persistence and convergence criteria for
transition matrices with real and nonnegative eigenvalues, it would not have been
possible to find a mobility index satisfying all the criteria. Hence the following.

THEOREM 1: Within the class of transition matrices with real nonnegative eigen-
values all persistence and convergence criteria are logically consistent.
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It is not known whether the restriction on P in Theorem 1 renders PC consistent
with the other criteria; we shall pursue a different approach to this problem in
the next section. Shorrocks (1978) shows that M is consistent with all persistence
and convergence criteria {except MPL, which he did not consider) for
quasimaximal diagonal (q.m.d.) transition matrices. (A matrix is maximal
diagonal if in each row the diagonal element is largest. It is quasimaximal diagonal
if this is true after appropriate scaling of the columnas: i.e., there exist g, ..., &,
such that w,p; = w;p;; for all §, j.) We find Theorem 1 an attractive complementary
result because it extends the class of transition matrices for which a known index
is consistent with the persistence and convergence criteria, and evaluation of
eigenvalues is straightforward whereas (to our knowledge) the q.m.d. character
of a matrix cannot be established algorithmically. None of the indices discussed
in Shorrocks (1978) satisfies all of the criteria set forth there, even for q.m.d.
transition matrices. A counterexample is provided by

A9 26 .55 20 .25 55
P=|.38 59 031, P*=|.38 .59 .03|,
d9 21 .60 A9 21 .60

- Mp(P)=.8100, Mp(P?})=.9183, Mp(P*)=.8050, Mp(P*?) = 9201,
Mp(P) = 8466, Mg(PY) = 9322, My(P*)= 8433, My(P*?) = 9351,
C M (P)=.7643, M (P?)= 8930, My,(P*)=.7614, M (P*?) = 8955,
Mg (P} =.7865, Mc(P?) = 9183, M {P*)=.7955, Mz (P**}= 9201,
Mp(P)=.9905, M,(P*)= 9999, Mp(P*)=.9962, Mp(P*})=1.0,
M,{ P} =.5965, M,(P*) = 8372, M,{(P*}=.6005, M,(P**) = 8404.
(The scaling constants that show P and P* are q.m.d. matrices are 3, 2, and 1
for-the first, second, and third columns, respectively; each matrix has a single
negative eigenvalue.} We see that Mp, My, and M, violate PC, and Mg, Mp,
and M, violate M. The restriction of Theorem 1 brings Mp = My into agreement
with the persistence and convergence criteria; e.g., note the counterexamples
(2.1) and (2.2) in which the matrices are all q.m.d. and satisfy Theorem 1.

Furthermore even Mp = Mg does not meet PC, as the following counterexample
shows:

21 24 55 22 23 .55
P=|38 59 03| P*={.38 59 .03|
19 21 .60 19 21 60

Mp(P)= Mz (P)= 8000, Mp(P*)=Mg(P*)=.7950,
Mp(P*)= Mg(P?) = 9219, Mp(P**) = Mg(P*?) =.9236,

in which the transition matrices are q.m.d. and positive definite with real eigen-
values.
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3. MOBILITY INDICES IN CONTINUOUS TIME

If the Markov chain model is formulated in continuous time and indices of
mobility are functions of the parameters of the continugus time model then the
temporal aggregation criteria become irrelevant. We shall argue subsequently
that the list of criteria should be shortened even further. It turns out that the
continuous time counterparts of three of the six measures discussed for the
discrete time model are equivalent, thus further simplifying the analysis. The
price paid for this clarification is that continuous time madels are not always
appropriate when discrete time models are (the case of intergenerational mobility
being perhaps the leading instance) although the converse is always true. A
further practical difficulty is that for certain configurations of the p; a correspond-
ing continuous time Markov chain daes not exist. This difficulty is symptomatic
of the inapplicability of the Markov chain model in a given ¢ircumstance rather
than a logical problem with the madel itself, however.

We begin with a heuristic derivation of the continuous time model and some
of its properties from the more familiar discrete time model. (For a rigorous
treatment, see Doob (1953, pp. 235-273).} Suppose that there are T time units
between observations, and the underlying model is discrete with A time units in
the transition interval and transition matrix P(4A). Without significant loss of
generality (Dhrymes, 1978, Propositions 39 and 40) assume that P(A) is
diagonalizable. Let the right eigenvectors of P corresponding to its eigenvalues
Aiy..., A, be arranged in the columns of the matrix Q, so that P= QAQ™". Then
P= P(A) T/4 and P(4)= QA*/TQ™'. The transition equation for the true model
is wi=a,_4P(4), s0

(B.1)  (Fi-Tia)/A=7 (P(A)-1)/A=7. ,QUAYT-1)Q 7!/ A.

Since lim 4o (Af/T—1)/A =log (4;)/ T we have, taking limits of both sides of
(3.1}, 7= m:R. The intensity matrix R=QNQ™', with N =diag (v,,..., v.),
v;=log (A;}/ T. The off-diagonal elements r; of R indicate prabability rates of
transition: for a very small time interval §, the true probability p,(8) that an
agent in state i will move ta state j is approximately r;8, lim ;o { p;(8}/ 6} =1.
The diagonal elements of R are the negatives of the rates of transition out of the
respective states: since A; =1 has correspanding eigenvector (1,...,1)" in the
discrete time madel, the row sums of R are log (A,)=0.

The relationship between the discrete and continuous time models can be
complicated by the problems of embeddability and aliasing. The continuous time
transition matrix R constructed from P is plausible only if r,; =0 for all i+, If
this condition is satisfied the observed pracess in discrete time with transition
matrix P is said to be embeddable in a continuous time process. There is no
convenient set of necessary and sufficient conditions for embeddability, although
the former have been expanded and the latter reduced over the years {Kingman,
1962; Singer and Spilerman, 1976; Frydman, 1980); however, by performing the
calculations autlined in the previous paragraph it is a simple matter to-ascertain
whether or not a given transition matrix P is embeddable. Embeddability is an
essential property of any transition matrix corresponding to a process whose
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evolution in continuous timie is to be described by a Markov chain model. As a
practical matter it is also essential if the formulation is in discrete time and T/ A
is large, since the failure of P to be embeddable will generally mean that P(4)
has negative elements.

The aliasing problem is a consequence of the fact that exp(yT)=
exp (v, + i2awk/ T)T for any integer k, and log {A;} therefore has many branches.
This problem sometimes can be solved arbitrarily always chaosing log (A;) =
Log (A, (the solution with imaginery coefficient smallest in absolute value} or
by ruling out some solutions through the requirement of embeddability. In general
there exists a high order number of solutions carresponding to (Log (;) + i2ak/ T,
k=0, =1, £2, ...}, j=1,...,n for R. The problem arises from the fact that
agents can “cycle” between states within an observation interval, while regularly
spaced abservations always take place at the same point in the cycle. The arbitrary
solution is most attractive when A, >0 and least attractive when A; < 0. Since the
matrix R is real, in any resolution of the aliasing problem the eigenvalues »; must
occur in complex conjugate pairs.

Suppose that the transition matrix Pr=exp (RT) of the discrete time model
for observations separated by T time units arises from a continuous time Markov
chain. From an index of mobility for the discrete time models M{ Py} we shall
construct the index M™* for the carresponding continuous time model by taking
M*(R}=limr.o T 'M(Py). It is straightforward to derive the indices M* corre-
sponding to the M of the previous section using the fact that 7 is the same for
R and all Py, and the results limy., T7'(1—exp (zT))=—2z and limr,,{(1—
|exp (zT)[} = —Re (2) for any complex z. To render the indices more comparable
subsequently, we shall also change the normalization factor of (n—1)"" to n™"
in the case of M% and M% , and introduce a normalization factor of n™" for
M%. The results are:

MA(R) =~ v;/n=-Y r,/n=—log[det (P)]/n;

J

Mﬁ(R)=Z Wl‘zrij“_jl;
M¥(R) = _Z Ti¥iss
M3E(R)=-% Re(y}/n=—L Re[log (3;)]/n;

M5(R)=—L w/n=—Lr;/n=—log[det(P)]/n;

M3(R)=—Re(#;) = —Re[log (A,)].

The indices M% and M¥ are the same, real, and nonnegative. Because R has
nonpasitive diagonal and nonnegative ofi-diagonal elements, and | 7, | =¥, .. | #4],
its eigenvalues »; all have negative real part (McKenzie, 1960, Theorem 2). Since
complex roots occur in conjugate pairs, M} is in fact the same as M3 and M}.
The eigenvalues of P never have modulus exceeding unity and occur in conjugate
pairs if complex; and two necessary conditions for embeddability are that P have
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no eigenvalues equal to zero and all negative eigenvalues occur in pairs {Kingman,
1962}. Consequently M%, M3%, and M% constructed from embeddable P will
always be the same. We shall denote the common index ME.

The persistence criteria for mobility indices in discrete time Markov chains
apply virtually unchanged in continuous time. Monaotonicity requires M*(R) >
M*(R*)if ry= r} forall i j and r; > r¥ for some i # j; immobility, M*(R) =0,
and strong immobility, M*(R) > 0 unless R =0. Convergence criteria are largely
irrelevant. The concept of perfect mability daes not apply to continuous time
Markov chains, since P' has all eigenvalues but one equal to zero, and r; =00
are conceptually inadmissible. (This is one reason for abandoning the normaliz-
ation factor (n —1)7", introduced by Shorrocks to render M(P"}y=1.) The ctiterion
of monatonicity in period length does not apply directly, although it could be
replaced by the criterion of velocity, M*(kR)} > M*(R) for all k> 1; velocity is
a strictly weaker criterion than monotonicity. Time aggregation criteria are inap-
plicable by design, but an additional criterion is desirable in the context of
continuous time models: freedom from aliasing requires that the index be the
same for any resolution of the aliasing problem.

All of the indices M* are nonnegative and satisfy immability, and M% clearly
satisfies strong immobility. The indices M% and M% fail stcong immability for
the same reasons as M and My, and MF fails because M#(R}=0 for any R
with v, = v, =0. A scaling factor k> 1 applied to R multiplies all eigenvalues of
R by k but leaves 7 unaffected, so all indices M* satisfy the criterion of velocity.
Since ME(R)=-%,r;, M¥ satisfies monotonicity. The indices M¥% and M%
violate monotonicity in much the same circumstances as Mg and M;,. A counter-
example is provided by

-05 .05 00 -05 05 .00
R=[ 20 -50 30| R*=| 60 -9 30|
50 20 —.70 50 20 -.70

M*%(R)=.1250, M¥%(R*)=.1137,
M¥(R)=.14T1, M%(R*)=.1258,
7, =.8529, @%=9194, '
73=.1029, 7} =.0565,
7= 0441, m¥=.0242.

The common index M ¥ exhibits freedom from aliasing, but M¥ does not. Whether
or not MY satisfies the criterion of monatonicity, and M% and M% satisfy freedom
from aliasing, are open questions.

We summarize these results, as follows.

THEOREM 2: The continuous time indices of mobility M%, M%, and M*% are the
same, and may be expressed equivalently as —tr (R)/n or —log[det (P}]/n. The
common index satifies the criteria of monotonicity, strong immobility, velocity, and
Sfreedom from aliasing.
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The common mobility index can be calculated so long as det (P) >0, but this
condition is no guarantee that P is embeddable. Since this, or any other index
M?*, is defined in terms of R, a check for embeddability should always be made
before the index is reported.

4. MOBILITY IN FRACTILE MARKOV CHAINS

While it is a simple matter to determine whether a given transition matrix P
is embeddable, it is quite awkward to estimate P subject to the constraint that
it be embeddable. The most ambitious attempt appears to be that of Cohen and
Singer (1979) who express the likelihood function in terms of the #; and then
maximize it using a grid search procedure in the neighborhood of well-chasen
initial estimates. Difficulties arise because gradient methods appear intractable
and the intensity matrix R contains so many parameters. One method of resolution
is to assume a parsimonious parameterization of R, obtain maximum likelihood
estimates by grid search, and compute asymptotic standard errors through numeri-
cal differentiation of the likelihood function at the maximum. In this section we
describe such a parameterization of R, for the case in which the states are fractiles.
The parameterization is chosen not anly to expedite maximum likelihoad estima-
tion, but also to simplify the interpretation of the intensity matrix and elaborate
on indices of mobility through the construction of what we shall call a mobility
profile. '

The fractile model may be constructed to describe the evolution of a cross
section of time series realizations of a continuously distributed random variable,
like income, earnings, or wealth; it is clearly inappropriate for well-defined
discrete states like labor force status. There are both discrete time fractile models
(e.g., intergenerational earnings or wealth) and continuous time fractile models
{e.g. income or earnings as typically available in panel data). Our treatment
applies to both kinds of fractile models, although much of the motivation is
provided by the continuous time variant. One of the attractions of the fractile
model is that it abstracts completely from distribution, and focuses on mobility.
Formally, we shall say that a Markov chain is fractile if forall tand allj=1,...,n,
= n~". Equivalently in the discrete time model n™'«'=n""¢'P, or n™'s is a left
(as well as right) eigenvector of R corresponding to the eigenvalue 1, or column
(as well as row) sums are unity; in the continuous time model, n™'¢ is a left
eigenvector corresponding to the eigenvalue 0. In the discrete time fractile model
the mobility indices My (P) and Ma(P) are the same, and the indices Mp(P),
Mz(P), and M (P) all satisfy the persistence criteria. In the continuous time
fractile model M¥%(R)} is the same as the common index ME(R); ME(R) is
different but satisfies all of the criteria we developed for a continuous time
mobility index.

We shall propose a parameterization of the intensity matrix consistent with
the probabilities of transition being approximately the same for all pairs of states
with the same number of intervening states, and identical in opposite directions:
e.g., in the decile Markov chain the rate of transition from the 30th to the 50th
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percentile will be the same as from the 50th to the 30th, and about the same as
from the 60th to the 80th. We shall consider a more specific, motivating example
before proceeding to the general case, Suppose that a,=<0, a,=0, a, =0, and
@+ 237, a,=0. Let the intensity matrix R be of the form

[ astay, ayta, a, 0O 0 0 0
a,+a, a, a a 0 0 0
a, €, a, 4, a 0 - 0
0 a, a4 ay @ a, :
(4.1) : AT
0 A a a a, T a,
t] een 0 a aq a, a,ta,
Q Q 0 a, a,+a, as+a, |

Notice that the matrix is banded, except in the corners: when a row would extend
beyond the matrix, it is “reflected” back and added to the other elements. This
farm of reflection has been treated in the time series literature (Durbin and
Watson, 1951; Anderson, 1970, pp. 284-290). We shall refer to a matrix of the
form (4.1} as a reflectant,

This parameterization is attractive for several reasons. As will be seen, the
eigenvectors of R are the same regardless of the values of the «,. It also turns
out to to be the case that the parameterization of the intensity matrix as a reflectant
is independent of the chaice of a. This is clearly the case in (4.1) if the number
of fractiles is reduced fram # to n/2.

In the general development we shall employ the following definitions.

DEFINITION: An n X n matrix B is said to be reflectant if there exists a sequence
{a.};L_. such that :
. (-]
bkj = X (aj—k't-lns + a2n:~(,-'+k)+1)'
i=—a0
DerintTiON: The Fourier transform of an absolutely summable sequence {a,}
is :

ali)= __E a; exp (— Irj).

THEOREM 3: If B is a reflectant then its eigenvectors consist of the columns
of Q, g =cos[(2m— D(j—1)m/2nld,,, and its corresponding eigenvalues are
a-Vm/nl,i=1,...,n

ProoF:;

H rl as
): bkmqmj = z ): (am—k+2ns + a2ns—(m+k)+l)
m=1

m=1] s=—an

ceos((2m—1)(j—1)m/2n].
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Each element of the sequence {a,} enters the sum exactly once. Either the change
of variable A=m—k+2ns or the change h=2ns—(m+k)+1 produces the
change cos [(2m —1){(j —1)7/2n]=cos {[2(h +k)—1]1(j —1)=/2n}. Hence

$ buntm= 3 acos {[20h+ k) =11Gi=1)7/2n)
=(1/2) exp {i[ 2k - 1)(j - 1)7/2n]}
: §/ a;,exp[th(j—.l}fr,Qn]

k=~

+(1/2) exp {—{[2k = 1}(j — 1} 7/2n]}

ozo a, exp [ —i2h(j—1}m/2n]

h=—x

=¢os [(2k—1)(j—1}a/2n]

§ a, cos [h(j— 1)/ n]= g d(A;).

h=—x

The parameterization of an intensity matrix as a reflectant is robust with respect
to the arbitray choice of the number of fractiles in the following sense. Suppose
that n, and n, are alternative numbers of fractiles. Let n' be the least common
multiple of n, and n,. If the transition or intensity matrix for n' fractiles is a.
reflectant, then the corresponding matrix for both n, and n, fractiles is also a
reflectant. This is a consequence of the following result.

THEOREM 4: Suppose that the intensity matrix R is collapsed from n fractile
groups to n*=n/g (n* and g integer), so that the new n*xn* matrix R* has
entries ¥ =g ' Y3 _1 T 8.1 rack—t)tugim—11eo If Ris areflectant with parameterizing
sequence {a.}, then R* is a reflectant with parameterizing sequence {a*},

at= 3 [1=(|h/g)ag.

Proor: {Use the fact that for any sequence {¢}, Y- Y-t Ciru-o=
Yho g (g—|h])cimn)
£ £
rfm=g_l Z Z rg(k—l)+u,g(m—l)+u

u=l u=1 i
o

B 8
=g_l z z z [a(m-—k]g-i-n—u-i-lns+a2ns—g(k+m—2)—u'—~u+l]

=1 u=1] s=—m

B

4 .
=8_1 Yy X (g_|h|)[a(m—k)g+2ns—h+a2ns—3(k_+m—l)—h]

§=—00 H=—g

B

£
:g_l Yy X (g_[h|)[a(m—k+2n‘x)g—h+a[zn“s—(m-i-k)—l]th]

g=—m h=—§

g
=g7" ¥ [ak kiant ﬂfn*s—(mﬂ]ﬂ]-

F=—0
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From the definition of the reflectant, it is clear that if a; and 4;..,, are unrestricted
then they are not separately identified. The parameterization of a transition or
intensity matrix as a reflectant will be more useful to the extent that the number
of parameters is kept small. This ¢can be done by truncating {a,}, or by a further
parameterization of the sequence itself, e.g., a, = b|s|* for |s[=m, ¢<0 and m
small. If {a,} is truncated at some point m, m < n, then the sequence provides a
characterization of the intensity matrix that is better than an order of magnitude
more parsimonious than the matrix itself. We shall refer to the sequence {a,};.,
in this case as a mobility profile. When m is small relative to n, a4, indicates,
effectively, the probabilities or rates of transition across s fractiles; as m becames
a substantial fraction of n, this interpretation is complicated by the reflections
in the corners of the intensity matrix. The trace of a reflectant is n ¥ 7o _. a5, +
Y. joaa;- Hence, for m<n we have M*(R)= ME(R} = —ao— YL, 0addi/ 1.

The key features of the continuous time parameterization proposed in this
section are the small number of parameters, which facilitates both maximum
likelihood estimation and a test against alternatives including non-embeddability;
its incorporation of similar transition probabilities to adjacent states; the invari-
ance of the parameterization with respect to the number of states, n; and’
computational efficiency owing to the fact that the eigenvectors of the intensity
matrix are known. Note that the transition matrix P of a discrete-time fractile
model could also be parameterized as a reflectant, using a sequence {¢} in lieu
of {a,}. The elements of {c¢;} must lie in the unit interval and sum to unity;
Theorems 3 and 4 of caurse apply to P so parameterized; and for m < n Mp(P) =

My(p)=n(1—co)/(n—1) = L2 moasts/(n—1).

3. AN EMPIRICAL EXAMPLE

To illustrate these methods we constructed fractile Markov chains using income
data from the National Longitudinal Survey of Young Men for the years 1970
and 1971. The data set consists of 654 young men who are employed, married,
white, and not enrolled in school in bath 1970 and 1971. Nating that 654 is evenly
divisible by 6, we selected n = 6 fractiles. The unconstrained maximum likelihood
estimate of the transition matrix is

624 229 083 046 009 009
174 468 211 073 055 018
. |01 74 404 211 073 037
.18 01 147 376 284 073
046 018 101 202 413 220
037 005 055 092 .165 .642

where a typical entry in the i-th row and j-th column is m/m;,, with m, =109
denoting the number of individuals in state { in 1970 and m, denoting the number
in state i in 1970 and j in 1971. For this matrix Mp(Pﬁ)—MU(Pd)— 6148,
Mg(B,) = 7781, Mg(P,)= 6145, MD(PG) =.9960, and M,(P,}=.2698. The
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maximum likelihood estimate of the corresponding three-state transition matrix
is

748 206 046
B.=|.197 569 234
055 225 720

for which Mp(B)=My(P))=4817, My(P;)=.3547, Mp(P;)=7591, and
M,(B)) = 3150.
The corresponding intensity matrices, computed as described in Section 3, are

[— 5385 4329 0603 0669  —.0348 - .0131 |
3029 —.9273 .5095 0052 1132 —.0034

8= 1655 3407 —1.1121 6132 —.0665  .0591
—-.0577 2419 2895 —1.3110 8578 —.0206
0819 -.0721 1868 5202 —1.1749 4582

0459 —.0161 0659 1055 3052 —.5063 |

for which M%(R,) = ME(Re) = ME(Rg) = Mb(Re) = 9283, M%(Re) =2.0256,
MHR,)=.3144, and

' —-.3368 3290  .0078
R,=| 3106 -—.6946 .3840

0262 3657 —.3919

forwhlchM £(R,) = MY(R,) = ME(R,) = M5(R;) = 4744, M%(R,) = 4711, and
MZ(R,) = .3783.

Since R6 has negative off-diagonal elements P6 is not embeddable, thus calling
into question the mterpretatlon of the corresponding estimated mobility measures
M *(Rﬁ) The fact that P6 is not embeddable could be interpreted as the failure
of a six-state model to exist in continuous time. It could also be interpreted as
a small-sample phenomenon. The latter interpretation is motivated by the observa-
tion that as the number of abservations per fractile decreases the probability of
obtaining ;=0 for some i and j increases for any P, and transition matrices
with null entries are never embeddable (Singer and Spilerman, 1976); the greater
is # for a given sample size, the more prevalent this problem will be.

Consider now estimation of the intensity matrix R subject to the constraint
that it be a reflectant. Following the development in Section 4, a given collection
of parameters 4,,...,4d, define R Given R, compute its eigenvalues ;,
j=1,...,n and those of the corresponding transition matrix P, A =exp(y;),
j=1,...,n The transition matrix itself is P(a,,. ..,a,,,)= QAQ", with
A=diag (A,..., A ) Grld search over values aof a,,..., a, detenmnes those
specific values aa, ..., d, which provide the maximum value L(. of the log-
likelihood function

L(ao, ... am)= 3 T mylog{py(as,...,am)l.

i=1j=1
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Arithmetic second-differencing of this function around 4y, . .., 4, provides the
estimated information matrix, and thereby asymptotic standard errors for the 4.
The corresponding unconstrained maximum of the log-likelihood function is

LAI=

'Itha

> m;; log (m:'j/ m;};
tj=1
under the null hypothesis that the constraints are correct

WLy = Lo) ~ x’[{n— 1= m].
The maximum likehood parameter estimates, the likelihood ratio test statistics,
and the mobility indices for several reflectant transition matrices are presented
in Table I. Consider the 3 x3 and 6 X6 reflectant matrices belaw:

ta, ata a4
Ri=| a,+a, a, a ta, |,
ay a+ta; ata

aQwtay ayta, a,+ta, a,+a, a,+ as a5
atay ayta, a+a, dyt as a, as+ a;

| @atas ata, ag+as a, atas a,+a,
Re= a,ta, a,+as a, aytas ay+a, a,+a,|
a,+ as iy &tas at+a, ata, at+a,
| 4 a,tas ayta, a,ta, a;+ a, ot ay |

In row 1 of Table I the reflectant matrix is of the form R, where a,= 0 while in
row 2 the constraint @, =0 is relaxed. In rows 3 through 7 of Table I the reflectant
matrix is of the form Ry. In row 3 the constraints ay= a; = a, = a; =0 are imposed,
inrow 4, a; = a,= as = 0, and so forth. The standard errars for both the parameter
estimates and the continuous time mobility indices, M%(R) and M%(R), are in
parentheses below the appropriate value.

The estimate of a, in row 1 of Table I indicates that individuals enter an
adjoining state at an annual rate estimated to be .3696; that is, in a very small
time interval 8 years the probability that an individual will enter an adjoining
state is estimated to be .36935. The likelihood ratio statistic is 2.039 % ¥%(3), so
the reflectant transition matrix is not significantly different from the unconstrained
matrix. Since the asymptotic distribution of M F(R)=.3696 is intractable we
report only the point estimates. The indices M%(R) =.4928 and M¥%(R)= 4928
coincide because a, =0 for all |s|> 1. Since they are linear functions of the a,
their asymptotic standard errors are easily computed. The index M%(B) indicates
that the average annual rate at which individuals exit a state is .4928,

The parameter estimates, test statistic, and mobility indices for the tri-diagonal
version of Ry are shown in row 3 of Table I. There is substantial mability to
nonadjoining states in ﬁﬁ, yet the tri-diagonal reflectant matrix allows for exits
only to adjoining states. This explains the relatively high estimate of a,, MA(R),
and ME(R) in row 3. The null hypothesis that the tri-diagonal parameterization
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is equal to the unconstrained transition matrix is definitively rejected. In faet,
only in rows 6 and 7 is the null not rejected for the six state case. However, when
estimating the parameters of R, with a, constrained to be zero (row 6) the grid
search resulted in a negative value for a,. Therefore, a; was constrained to be
zero and maximum likelihood estimates of a,, d,, and a, were obtained. A similar
situation arose in estimating the parameters of R, without a, constrained to be
zero (row 7, a, was estimated to be less than zero and then constrained to be
zero). These results are not surprising given Iid, the unconstrained estimated
intensity matrix: since f’é 1s non-embeddable it is not surprising that the maximum
likelihood estimates of the parameters of the reflectant matrix tend toward
non-embeddable values. In fact, nearly all of the negative oft-diagonal elements
in Iiﬁ carrespond to elements in R4 which contain either a, or a,.

As m increases for bath the three-state and six-state madels, M¥(R) increases
while M%4(R) and M%(R) decrease. The changes are small except for the change
from m=1 to m=2 in the six-state model; m =1 for that model is definitively
rejected by the likelihood ratio test. For small m the mobility to distant states
shown in Py and B, can only be interpreted as high exit rates to closely adjoining
states. As m is increased these exit rates generally fall and M%(R) and M§(R)
decrease.

6. CONCLUSION

This paper extends the axiomatic approach ta the development of mobility
indices (Shorrocks, 1978) in three ways. First, we show that the axioms can be
grouped into three categoaries: persistence, convergence, and temporal aggregation
criteria. We show that for transition matrices with real nonnegative eigenvalues
all persistence and convergence criteria are logically consistent, Shorracks
obtained essentially the same result for transition matrices that are quasimaximal
diagonal, but this praperty cannot be verified algorithmically. '

Second, the development of continuous time mobility indices removes the
influence of the time interval between observations and renders the temporal
aggregation criteria irrelevant. Interpretation (although not computation) of
continuous time mobility indices requires that the discrete time transition maxtrix
be embeddable in a continuous time Markav chain, We have shown that it is
straightforward to determine whether a given transition matrix is embeddable.
Since the processes modelled by Markov chains often take place in continuous
time, this determination may often be of independent interest, whether or not
continuous time mobility indices are ta be formulated.

Third, we propose a parsimonious parameterization for the intensity matrix
{the continuous time analogue of the transition matrix) that is applicable when
the states are fractiles. The respective parameters, a., indicate the instantaneous
rate of transition across s fractiles. The number of parameters is less than the
number of states, so the parameterization conveys more information about mahil-
ity than a single index while substantially reducing the number of parameters in
the intensity matrix itself. The parameterization places many restrictions on the
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intensity matrix; in the illustration provided here using a subsample of size 654
from NLS data for 1970-71, it fails to be rejected.

There are at least two directions in which this work might be extended. First,
it should be straightforward to make transitions rates functions of observable,
time invariant personal characteristics. This approach has been widely used in
proportional hazard models of duration data (e.g., Flinn and Heckmann, 1982).
It becomes more complicated when time varying exogenaous variables and unob-
served heterogeneity are allowed. Second, alternative approaches to mobility in
discrete time might be extended to continuous time using the approach taken in
this paper. For example, Theil (1972) measures mean first passage time for any
state to the limiting distribution, and divides this into travel and waiting time
components. It seems likely that such measures are sensitive to temporal aggrega-
tion, and a continuous time formulation of the approach might prove fruitful.
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