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1� introduction

In economics and other social sciences, researchers often wish to consider sta-
tistical models that allow for more complex relationships than can be inferred using
only cross-sectional data. Panel, i.e., longitudinal, data, in which the same units are
observed repeatedly at different points in time, can often provide the richer data needed
for such models (e.g., Chamberlain (1984), Hsiao (1986), Baltagi (1995), Arellano and
Honoré (forthcoming)). Missing data problems, however, can be more severe in panels,
because even those units that respond in initial waves of the panel may drop out of the
sample in subsequent waves (e.g., Hausman and Wise (1979), Robins and West (1986),
Ridder (1990), Verbeek and Nijman (1992), Abowd, Crépon, Kramarz, and Trognon
(1995), Fitzgerald, Gottschalk, and Moffitt (1998), and Vella (1998)). Sometimes, in the
hope of mitigating the effects of such attrition, panel data sets are augmented by replac-
ing the units that have dropped out with new units randomly sampled from the original
population. Following Ridder (1992), who used such replacement units to test alternative
models for attrition, we call such additional samples refreshment samples.
Here we explore the benefits of refreshment samples for inference in the presence of

attrition. Two general approaches are often used to deal with attrition in panel data sets
when refreshment samples are not available. One model, based on the missing at random
assumption (MAR, Rubin (1976), Little and Rubin (1987)), allows the probability of attri-
tion to depend on lagged but not on contemporaneous variables that have missing values.
The other model (denoted by HW in the remainder of the paper, given the similarity to
a model developed by Hausman and Wise (1979)), allows the probability of attrition to
depend on such contemporaneous, but not on lagged, variables. Both sets of models have
some theoretical plausibility, but they rely on fundamentally different restrictions on the
dependence of the attrition process on the time path of the variables. They can therefore
lead to very different inferences, especially regarding the dynamic aspects of the under-
lying process. However, in many cases panel data alone cannot be used to distinguish
between them. For example, in the two-period case without a refreshment sample both
models are essentially just-identified (except for some inequality restrictions under the
HW model). If the panel data set is augmented with a refreshment sample, however, the
data can distinguish between the MAR and HW models. The two models have in that
case testable restrictions and it is possible to estimate a more general class of models that
nests both MAR and HW as special cases. This class of models, which we label Additive

1 We thank Joshua Angrist, Gary Chamberlain, Jerry Hausman, and participants in presentations
at Harvard-MIT, NYU, UCLA, Aarhus, the International Statistical Institute meetings in Instan-
bul, students at the University of Wisconsin, three referees and a coeditor for comments. Imbens
acknowledges financial support through a research fellowship from the Alfred P. Sloan Foundation
and Grant SBR 9511718 from the National Science Foundation.
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Non-ignorable (AN), is characterized by an additivity restriction on the attrition process.
We show that the AN class of models is nonparametrically just-identified in the presence
of refreshment samples.
In the next section we set up the general problem of attrition in a two-period panel data

set, discuss traditional restrictions on the attrition process that have been used in eco-
nomics and statistics, and discuss how refreshment samples can be used to relax some of
these restrictions. To provide intuition for the identification results, we study in Section 3
a simplified version of the problem, involving only binary variables. Section 4 contains our
main result, a theorem that makes precise the extent to which refreshment samples aid in
identification under more general models of attrition. Section 5 concludes by discussing
extensions to multi-wave panels.

2� general model

We consider a two-period panel data set with attrition. Let Zit be a vector containing
all time-varying variables for unit i in time t (including both exogenous and endogenous
variables), and let Xi be a vector containing all time-invariant variables for unit i.2 In the
first time period we draw a random sample of size NP from a fixed population; we refer
to this as the panel. For each unit i in this sample, for i = 1� 	 	 	 �NP , we observe Xi and
Zi1. For a subset of size NBP of this sample, we observe in the second period a second
variable Zi2; we refer to this subset as the balanced panel. The remaining NIP =NP −NBP

units have dropped out of the panel and all of their Zi2 are missing; this will be called
the incomplete panel.
In addition to the panel data set, in the second period we draw a new random sample

from the original population, the refreshment subsample, of size NR.3 For these units we
observe Zi2 and Xi, but not Zi1.
We assume that all units respond the first time they are approached: if approached

in period 1 (as part of the panel), unit i will respond in the first period, and thus Zi1
and Xi will be recorded, whereas if first approached in the second period (as part of
the refreshment sample), unit i will respond in the second period and Zi2 and Xi will
be recorded.4 Not all units, however, respond the second time they are approached. Let
Wi be an indicator denoting the willingness to respond repeatedly; Wi = 1 implies that
unit i, if approached in the second period after already having responded in the first
period, will respond again, so that Zi2 will be recorded, whereas Wi = 0 implies that unit
i, if approached in the second period after already having responded in the first period,
will choose not to respond, so that Zi2 will not be recorded. The willingness to respond
indicator, Wi, is observed if, and only if, the researcher attempts to get a second response
from unit i; that is, we observe Wi if unit i is part of the panel, but Wi is missing if unit i
is part of the refreshment sample.
We want to recover the joint distribution of �Z1�Z2�X�, or possibly the conditional

distribution of �Z1�Z2� given X. This immediately identifies any parameter that can be

2 Whenever the meaning is clear from the context we drop the subscript i in the remainder.
3 We could allow for stratified sampling based on Xi in both random samples without any modifi-

cation of our main results.
4 In many panel data sets there is also initial nonresponse. For clarity of exposition we focus on

attrition issues ignoring such initial nonresponse. In practice one might wish to account for this as
well, but our results do not add to the methods already available for dealing with this issue (e.g.,
Little and Rubin (1987)).
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defined as a functional of one of these joint distributions. The conditional distribution of
W given �Z1�Z2�X� is of concern solely because its properties can affect our ability to
recover the distribution of interest. Throughout the paper we assume that the conditional
probability of responding in the second period is strictly positive, so that we can write

f
(
Z1�Z2�X

)= f
(
Z1�Z2�X�W = 1) ·Pr�W = 1�
Pr
(
W = 1�Z1�Z2�X

) �

Because we can directly estimate f �Z1�Z2�X�W = 1� from the balanced panel, and
Pr�W = 1� from the full panel, identification of the willingness-to-respond probability
Pr�W = 1�Z1�Z2�X� implies that the joint distribution of �Z1�Z2�X� is identified. Given
identification, inference can proceed in a number of distinct ways. One possibility is to
weight the complete-panel observations by the inverse of the attrition probabilities (e.g.,
Hansen, Hurwitz, and Madow (1953), Hellerstein and Imbens (1999)). An alternative is to
use the attrition probabilities to (multiply) impute the missing values (e.g., Rubin (1987),
Brownstone and Valletta (1996)). A third approach is to jointly estimate the model of
interest with the attrition model, either in a parametric or semiparametric setting. Here we
focus solely on identification. The working paper version of this paper (Hirano, Imbens,
Ridder, and Rubin (1998)) discusses estimation using multiple imputation in this context.
Next let us consider two models that have been used for inference with panel data

in the presence of attrition. The first model makes the assumption that Z2 is missing at
random (MAR) in the panel, to yield

W⊥Z2
∣∣Z1�X �MAR��(1)

implying that if the parameters of the missing data process are distinct from those of
the data distribution, then the missing data process is ignorable (Rubin (1976), Little and
Rubin (1987)). This case is sometimes also referred to as selection on observables (e.g.,
Moffitt, Fitzgerald, and Gottschalk (1999)) because we can write the attrition probability
as

Pr
(
W = 1�Z1�Z2�X

)= Pr(W = 1�Z1�X
)
�

with the probability of attrition only depending on Z1 and X, which are always observed.
The MAR model is just-identified in the absence of further restrictions on the joint distri-
bution of the variables. An application to panel data is Marini, Olsen, and Rubin (1980).
The second model for panel data with attrition we consider is closely related to a model

used by Hausman and Wise (1979), and more generally is related to models developed
for sample selection in cross-sectional surveys by Heckman (1976, 1979). A generalized
version of Hausman and Wise’s model allows the probability of attrition in the second
period to depend in an arbitrary fashion on the contemporaneous variables Z2, as well as
on X, but assumes that the first period variables do not affect this probability:

W ⊥Z1�Z2�X �HW��(2)

Related models have also been referred to as selection on unobservables (e.g., Moffitt,
Fitzgerald, and Gottschalk (1999)) because attrition partly depends on variables that are
not observed when the unit drops out:

Pr
(
W = 1�Z1�Z2X

)= Pr(W = 1�Z2�X
)
�
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with Z2 not observed if W = 0. The appeal of these models is that they can reflect optimal
behavior of the respondent if incentives for responding depend on current or future,
unobserved, rather than past, observed, values.
To illustrate the main issues, consider the following simple model for a two-period

panel:

Yit = �i +� · t+� ·Xi · t+�it�

whereXi ∈ �0�1� is a group indicator. We are interested in �, the difference in time trends
for the two groups, allowing for unit-specific intercepts. Assuming �it is independent of
Xi, we can estimate � by regressing the change Yi2−Yi1 on Xi:

Yi2−Yi1 = �+� ·Xi +�i2−�i1�

leading to a standard difference-in-differences estimator (e.g., Blundell and MaCurdy
(2000)):

�̂=
(
Yi2�Xi=1−Yi1�Xi=1

)
−
(
Yi2�Xi=0−Yi1�Xi=0

)
�

Now suppose there is attrition in the second period. A parametric version of the MAR
model could specify the attrition indicator as

Wi = 1
{
�0+�1 ·Xi +�2 ·Yi1+�i > 0

}
�(3)

with a standard normal distribution for �i, independent of �Xi�Yi1�Yi2�. A corresponding
parametric version of the HW model could specify

Wi = 1
{
�0+�1 ·Xi +�3 ·Yi2+�i > 0

}
�(4)

with �i again standard normal and independent of �Xi�Yi1�Yi2�. Although these models
can be generalized somewhat (for example by allowing more general functions of Yi1 and
Xi, or of Yi2 and Xi, and non-normal disturbances), with only panel data available one
cannot introduce dependence on Yi2 in the MAR model, or dependence on Yi1 in the
HW model, without relying heavily on functional form and distributional assumptions. In
other words, some exclusion restriction is needed for identification, and the MAR and
HW models differ in the exclusion restrictions they impose.
The choice between the two different models without a refreshment sample therefore

relies on theoretical considerations. Such considerations can often support either model.
Suppose that the disutility of responding again in the second period depends on the value
of the second period variables, Zi2. For example, the effort in responding may be related
to some of the current responses. If each individual realizes the burden to respond, this
would be supportive of the HW model where the contemporaneous values affect the
probability of responding. On the other hand, the decision whether to respond may be
related to past experiences—if in the first period the effort in responding was high, an
individual may be less inclined to respond in the second period. This may be particularly
relevant if the decision to respond is made before the respondent knows the value of the
future variables. If expectations about future variables are formed using past experience,
then some form of the MAR model, in which attrition depends on past values, could be
appropriate. In practice one may therefore not wish to rule out either the HW or MAR
models a priori.
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With a refreshment sample one can use the data to help distinguish between the two
models, as well as estimate more general models. A parametric example of the class of
models we introduce has the form

Wi = 1
{
�0+�1 ·Xi +�2 ·Yi1+�3 ·Yi2+�i > 0

}
�

allowing dependence of the attrition decision on both Yi1 and Yi2, and thus nest-
ing both the MAR and HW models, as well as leading to testable restrictions on
those models. As in the MAR and HW models, we can generalize this model to
allow the index to depend on general functions of Yi1 and Yi2, as well as inter-
actions with Xi, but an important limitation is that we cannot allow for inter-
actions between Yi1 and Yi2, demonstrating that a refreshment sample does not
lead to full nonparametric identification of the attrition process. In the next section
we make the previous claim precise for a simple case with all variables binary.
In Section 4 we present the general results and formalize the class of models identified.

3� binary case

To provide intuition for the main identification result, we begin by examining the sim-
pler case where both Z1 and Z2 are binary scalars, without time-invariant covariates X. In
this case the joint distribution of �W�Z1�Z2� is fully described by the eight probabilities
Pr�W =w�Z1 = z1�Z2 = z2� for w�z1� z2�∈ �0�1�. We parameterize these eight probabil-
ities in terms of the joint distribution of Z1 and W and the conditional distribution of Z2
given Z1 and W :

qzw = Pr(Z2 = 1�Z1 = z�W =w
)
�

and
rzw = Pr(Z1 = z�W =w

)
�

This parameterization is particularly convenient for separating the identifying information
from the panel and the refreshment sample. In large samples we can learn the value of
rzw for all z�w ∈ �0�1� from the panel alone, because the panel is a random sample from
the population, and for this subsample we always observe Z1 and W . Similarly we can
learn the values of qz1, for z ∈ �0�1�, from the panel, because the balanced panel with
W = 1 and Z1 = z is a random sample from the subpopulation with W = 1 and Z1 = z,
and for this subsample we always observe Z2. The panel alone therefore identifies six of
the eight probabilities that describe the joint distribution of �W�Z1�Z2�. The panel data,
however, contain no direct information concerning the remaining two probabilities q00
and q10, because in the panel we never observe Z2 if W = 0.
The refreshment sample allows us to deduce in large samples the marginal distribution

of Z2, captured by a scalar parameter Pr�Z2 = 1�. Since
Pr
(
Z2 = 1

)= ∑
x�w

qzw · rzw�

knowledge of the marginal distribution of Z2 corresponds to a single linear restriction on
the two remaining parameters q10 and q00, given the parameters q01� q11� r00� r01� r10, and
r11 that are identified from the panel alone. The panel and refreshment sample combined
therefore do not enable us to estimate the values of q00 and q10 uniquely from the popula-
tion distribution of the observed data without an additional assumption—the refreshment
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sample implies only a single restriction on the two remaining parameters and does not
achieve full nonparametric identification.
First we discuss the testable restrictions in the MAR and HW models given the pres-

ence of refreshment samples. Neither the MAR nor the HW model requires the refresh-
ment sample for estimation of q00 and q10. The independence assumptions (1) and (2)
each imply two restrictions on the eight parameters rzw and qzw that are sufficient for
identification of q00 and q10 from the panel alone. Specifically, the MAR restrictions imply

q00 = q01 and q10 = q11�(5)

Under the HW assumption the relations between q00 and q10 and the directly estimable
parameters are more complex:

q00 =
r10 · r01 · �1−q01�− r11 · r00 · �1−q11�

r00 · r11 ·q11 · �1−q01�/q01− r11 · r00 · �1−q11�
(6)

and

q10 =
q00 · r00 ·q11 · r11
q01 · r01 · r10

�(7)

Under either of these two models, we can therefore estimate all eight parameters solely
from the panel, thereby leading to an estimate for the marginal distribution of Z2. This
indirect estimate of the marginal distribution can be compared to the direct estimate
based on the refreshment sample to test the specific attrition model.
To illustrate these issues we use a subset of the Dutch Transportation Panel, a survey

on transportation usage by Dutch households that incorporated refreshment samples in its
design (see Meurs and Ridder (1992) and Ridder (1992) for more details on this data set).
We define a binary variable indicating whether the total number of trips for a household
during the survey week was less than or equal to twenty-five. Table I summarizes the sam-
ple information for this variable and Table II presents estimates of the directly estimable
parameters rzw and qz1. Table III presents estimates of the remaining parameters qz0 and
the implied marginal probability Pr�Z2 = 1� under the MAR and HW models.

TABLE I
Summary Statistics for Dutch Transportation Panel:

Zit Indicates whether the Number of Trips in the Period t is
Less than or Equal to 25, and Wi Indicates Willingness to

Respond in the Second Period �N = 2420�
Subsample Zi1 Zi2 Wi No of obs.

Balanced Panel 0 0 1 832
(NBP = 1031) 0 1 1 66

1 0 1 53
1 1 1 80

Incomplete Panel 0 — 0 518
(NIP = 733) 1 — 0 215

Refreshment Sample — 0 — 520
(NR = 656) — 1 — 136
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TABLE II
Estimates and Standard Errors For Dutch Transportation

Panel Example: Directly Estimable Parameters

W = 0 W = 1 qz1

Z1 = 0 r̂00 = 0�294 r̂01 = 0�509 q̂01 = 0�074
�0�011� �0�012� �0�009�

Z1 = 1 r̂10 = 0�122 r̂11 = 0�075 q̂11 = 0�602
�0�008� �0�006� �0�043�

First we can test whether the hypothesis that the willingness to respond indicator is
independent of �Z1�Z2�, that is, whether the claim that the missing data are Missing
Completely At Random (MCAR, Little and Rubin (1987)), is consistent with the data by
testing independence of Z1 and W in the panel. A likelihood ratio test gives 72.2, with a
Chi-squared distribution with one degree of freedom under the null hypothesis, suggesting
the data clearly reject the hypothesis that the missing data process is MCAR.
Next, consider estimation of the MAR and HW models using only the panel data. For

the six directly estimable parameters, rzw and qz1, the MAR and HW models agree exactly.
Assuming MAR, the panel subsample leads to the estimates

q̂00 = q̂01 = 0�074
and

q̂10 = q̂11 = 0�602�

implying that the marginal probability of the number of trips in the second period being
less than or equal to twenty-five is

∑
z�w r̂zw · q̂zw = 0�178, with a standard error of 0.020 (see

Table III). This result can be compared to the marginal probability of the number of trips
in the second period being less than or equal to twenty-five implied by the refreshment
sample, which is 136/�136+520� = 0�207, with a standard error of 0.016. The likelihood
ratio test statistic for the MAR null hypothesis is 2.2, with a !2(1) distribution under the
null hypothesis, so that this difference is not statistically significantly different from zero
at conventional levels.

TABLE III
Estimates and Standard Errors For Dutch Transportation

Panel Example: Model-based Estimates

MAR HW AN

q̂00 = 0�074 q̂00 = 0�306 q̂00 = 0�123
(0.009) (0.072) (0.032)

q̂10 = 0�602 q̂10 = 0�894 q̂10 = 0�727
(0.043) (0.097) (0.068)

Pr�Ẑ2 = 1�= 0�178 Pr�Ẑ2 = 1�= 0�282 Pr�Ẑ2 = 1�= 0�207
(0.020) (0.021) (0.016)
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Under the HW assumptions, the two probabilities q00 and q10 that cannot be estimated
directly from the data are

q̂00 =
r̂10 · r̂01 · �1− q̂01�− r̂11 · r̂00 · �1− q̂11�

r̂00 · r̂11 · q̂11 · �1− q̂01�/q̂01− r̂11 · r̂00 · �1− q̂11�
= 0�306�

q̂10 =
q̂00 · r̂00 · q̂11 · r̂11
q̂01 · r̂01 · r̂10

= 0�894�

The implied estimate of the marginal probability that Z2 = 1 is 0.282 (with a standard
error of 0.021), substantially different from the refreshment sample estimate of 0.207.
The likelihood ratio test statistic for the HW null hypothesis is 7.8, with a nominal !2�1�
distribution, implying a statistically significant difference at the 0.05 level. Thus, in this
particular example, the MAR assumption is better supported by the extra information in
the refreshment sample than the HW assumption.
The above discussion demonstrates that the MAR and HW models have testable impli-

cations if refreshment samples are available, suggesting that more general models may
be identified. We now propose a model that generalizes MAR and HW in a way that
fully exhausts the additional information provided by the refreshment sample and has no
testable implications.5 To do so it is convenient to characterize the MAR and HW models
in a different way than the restrictions (5) for the MAR model and (6)–(7) for the HW
model. Note that, with no essential loss of generality6 given the binary nature of Z1 and
Z2, the probability of response can be written as

Pr
(
W = 1∣∣Z1 = z1�Z2 = z2

)= g
(
�0+�1 ·z1+�2 ·z2+�3 ·z1 ·z2

)
�(8)

for some known, strictly increasing g�a� satisfying lima→−
 g�a�= 0, lima→
 g�a�= 1. With
Z1 and Z2 binary, this specification saturates the model, implying that the choice of g�·� is
irrelevant, and the model places no restrictions on the data-generating process. Assuming
MAR (HW) in this context amounts to assuming �2 = �3 = 0 (�1 = �3 = 0 respectively),
and in each case the choice of g�·� is irrelevant. This representation shows that the two
restrictions that each model imposes have one restriction in common: �3 = 0.
The class of models we propose has the form

Pr
(
W = 1∣∣Z1 = z1�Z2 = z2

)= g
(
�0+�1 ·z1+�2 ·z2

)
�(9)

for unrestricted values of the unknown parameters �0��1, and �2. This model rules out
an interaction term between Z1 and Z2, but allows for non-ignorable models by allowing
�2 to differ from zero.7 To reflect the additivity of the index in the g�·� function in the
first and second period variables, we refer to this as the Additive Non-ignorable (AN)

5 An alternative is to characterize the set of values of the parameters of interest consistent with
the panel and refreshment sample, following the bounds approach developed by Manski (1995). This
is straightforward for the current example with all variables binary, and is carried out in the working
paper version of the current paper (Hirano, Imbens, Ridder, and Rubin (1998)). Obtaining bounds
in this way is more complicated in cases with continuous time-varying variables.
6 Other than that we continue to require the conditional attrition probability to be strictly between

zero and one.
7 Rosenbaum and Rubin (1983) and Scharfstein, Rotnitzky, and Robins (1999) use similar models

to investigate sensitivity to MAR assumptions without the additional information that would identify
these models.
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model. Note that both the MAR and HW models are special cases of this model, as the
AN model imposes only the restriction �3 = 0 that is common to MAR (which imposes
both �2 = 0 and �3 = 0) and HW (which imposes both �1 = 0 and �3 = 0).
An important feature of our approach is that the solutions q̂10 and q̂00 in principle

depend on the choice of the g�·� function. This is not the case for the MAR and HW
models where the choice of g�·� is immaterial. Because the restriction in the AN model
rules out an interaction, one needs to specify the metric in which the variables enter addi-
tively. One interpretation of the choice of the g�·� function is that it represents a choice
of distance function. In this view one can interpret the estimate of the joint distribution of
�Z1�Z2� as that closest to the one estimated by the MAR model, subject to the restriction
on the second period marginal distribution implied by the refreshment sample. This inter-
pretation has a close connection to the empirical likelihood literature (Qin and Lawless
(1994), Imbens, Spady, and Johnson (1998)).
Now let us return to the binary data example and consider estimation of the joint dis-

tribution of �Zi1�Zi2� using data from both panel and refreshment samples. The estimates
for rzq and qz1 are the same as for the MAR and HW models presented in Table II.
The last column in Table III presents the AN estimates for q00 and q10. These estimates
are consistent with both the panel and the refreshment sample, and reconcile some of
the differences between the MAR and HW models. The AN estimates in Table III are
based on the logistic model, with g�a�= exp�a�/�1+exp�a��. Estimates based on the pro-
bit model differ only slightly. For q00 and q10 the logistic-based estimates are 0.12258 and
0.72657, the probit model based estimates are 0.12251 and 0.72673, and the linear proba-
bility model based estimates are 0.12217 and 0.72755. There appears to be little sensitivity
to the choice of g�·�.

4� main results

In this section we generalize the identification result in Section 3 to allow for multival-
ued time-dependent and time-invariant variables. The basic intuition from the previous
section is that in the presence of refreshment samples we can allow for dependence on
both first and second period variables, but that we cannot allow them to interact in the
index of the attrition model.
First consider the case without time-invariant variables. The main result is that without

restrictions on the joint distribution of �Z1�Z2�, one can identify attrition models of the
form

Pr
(
Wi = 1

∣∣Z1 = z1�Z2 = z2
)= g

(
k0+k1�z1�+k2�z2�

)
�

for known g�·�, and subject to normalizations on k1�·� and k2�·�, e.g., k1�0�= k2�0�= 0.
As in the binary case, the MAR model is generalized to allow the attrition probability
to depend on the value of the second period variable, but interactions between first and
second period variables are still ruled out. Generalizing the binary case, the functions of
z1 and z2 are allowed to be completely general.
The extension to the case with time-invariant variables allows k0�k1�·�, and k2�·� to be

arbitrary functions of x:

Pr
(
Wi = 1

∣∣Z1 = z1�Z2 = z2�X = x
)= g

(
k0�x�+k1�z1� x�+k2�z2� x�

)
�

with the normalization now at every value of x, e.g., k1�0� x�= k2�0� x�= 0.
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Theorem 1: Let the conditional distributions of Z1�Z2 given X = x and given X = x,
W = 1 have density functions f �z1� z2�x� and f �z1� z2�x�W = 1�, respectively, with respect
to the ( product) Lebesgue measure. Let S�x� = ��z1� z2��f �z1� z2�x� > 0� be the support of
the population conditional probability density function. Suppose that:
(A1) the support of f �z1� z2�x�W = 1� coincides with S�x� almost surely with respect to x;
(A2) the conditional density functions f �z1� z2�x� and f �z1� z2� x�W = 1� are square inte-

grable almost surely with respect to x;
(A3) g is a differentiable, strictly increasing function with lima→−
 g�a� = 0 and

lima→
 g�a�= 1.
Then there is a unique set of functions k0�x��k1�z1� x�, and k2�z2� x�, defined for almost

all values of x, such that:
(i) for some z̄1�x�� z̄2�x� in S�x��k1�z̄1�x��x�= k2�z̄1�x��x�= 0, for almost all x;
(ii) for almost all �z1� z2� and almost all x

∫ Pr�W = 1�x�
g�k0�x�+k1�z1� x�+k2�z2� x��

f
(
z1� z2�x�W = 1)dz2 = f1

(
z1�x

)
�

∫ Pr�W = 1�x�
g�k0�x�+k1�z1� x�+k2�z2� x��

f
(
z1� z2�x�W = 1)dz1 = f2

(
z2�x

)
�

Proof: See Appendix.

Given the result in the theorem, the probability of responding is

Pr
(
W = 1∣∣z1� z2� x)= g

(
k0�x�+k1�z1� x�+k2�z2� x�

)
�

The implied estimate of the joint distribution of �Z1�Z2� given X is then

f
(
z1� z2

∣∣x)= f �z1� z2�x�W = 1� ·Pr�W = 1�x�
g�k0�x�+k1�z1� x�+k2�z2� x��

�(10)

The first equation in (ii) then ensures that the implied first period marginal distribution is
consistent with the information in the panel. The second ensures that the second period
marginal distribution is consistent with the information in the refreshment sample. For
any choice of g there is therefore exactly one AN model that is compatible with the
restrictions. Note that (i) is an obvious normalization of the functions due to the inclusion
of a constant k0�x� in the AN model.
In the theorem we assumed that the support of the joint distribution conditional on

W = 1 coincides with the support S�x� of the unconditional joint distribution.8 If the sup-
port of the observed distribution is strictly smaller than that of the population distribu-
tion, then k1�z1� x�=−
 if �z1� z2� ∈ S�x� for some z2 (and hence z1 is in the support of
f1�z1�x�, but f �z1� z2�x�W = 1�= 0 for almost all z2). The values of z2 with k2�z2� x�=−

can be found in the same way. Of course, the joint population distribution cannot be
recovered for these values of z1� z2 because they are never observed in the panel.
In practice one may not have sufficient data given the dimension of the variables to esti-

mate the attrition process completely nonparametrically (within the class of AN models).
In that case one may wish to impose additional smoothness on the process using relatively

8 Up to a set of Lebesque measure 0.
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flexible parameterizations. As in the example in Section 2, one may wish to specify the
attrition process as

W = 1��′
0X+�

′
1Z1+�

′
2Z2+� > 0��

with � standard normal, or include additional polynomial terms involving Z1 and X, or Z2
and X. The identification result in this paper implies that the identification does not rely
on any of these functional form or distributional assumptions. In practice the estimates
would be more robust asymptotically than those based on the same model using only data
from the panel.

5� conclusion

Panel data sets can provide a much richer amount of information than cross-sections,
but they often are subject to more severe missing data problems through attrition. Adding
a sample consisting of new units randomly drawn from the original sample to replace
units who have dropped out of the panel, a so-called refreshment sample, can be helpful
in mitigating the effects of attrition in two ways. First, it can make estimation of conven-
tional models more robust and precise, and allow for testing of these models. Second,
the presence of a refreshment sample allows for estimation of richer models, potentially
resolving differences between selection models common in the statistical literature and
those popular in the econometric literature. In this paper we propose a class of models
to incorporate the information in refreshment samples that naturally extends the most
commonly used specifications for the attrition process.
The discussion in this paper has focused on two-period panels. With more than two

periods one can have multiple refreshment samples, one for each period from the second
onwards. These refreshment samples can themselves be followed over time as panels,
possibly with attrition, or they can be pure cross-sections. In both cases the refreshment
samples provide additional information regarding the attrition process. The form of the
models identified in those cases can be found using the same type of empirical likelihood
approach discussed in Section 3 to motivate the AN model, where we estimate the joint
distribution as the one closest to the joint distribution for the complete panel subject to
the restrictions implied by the refreshment samples.
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APPENDIX: Proof of Theorem 1

The proof consists of three parts. First, we prove that the equations in (ii) are equivalent to the
first-order conditions of a constrained maximization problem. Next, we prove that the solution to this
problem is unique. Finally, the theorem follows directly by the combination of these two results. Let
x be an arbitrary value of X such that S�x� is not empty. In the sequel we fix x.
In the constrained maximization problem, we maximize a functional,9 defined on the vector space

� of square (Lebesgue) integrable functions f ' 
2 → 
. A sufficient condition for a p.d.f. to be
square integrable is that f be bounded on 
2. By definition, � is an L2 space and hence a Hilbert
space.
The constraints are a set of inequality and equality constraints. The equality constraints are defined

by (linear) mappings from � to �1, the Hilbert space of square integrable density functions (with
respect to the Lebesgue measure) on 
, of which f �z1�x� and f �z2�x� are elements. Inequalities
involving f are defined using the convex cone of non-negative functions defined on 
2. With the
L2 norm this cone is regular, a fact that will be used in Lemma 2. In the sequel, the dots in e.g.
f �·� ·�x�W = 1� or f �·� z2�x� indicate that we consider the function and not the value taken by the
function at a particular point in its domain.

Lemma 1: Let x be such that S�x� is not empty. Consider the constrained maximization problem

max
f∈�

∫∫
f
(
z1� z2

∣∣x�W = 1)h( f �z1� z2�x�
f �z1� z2�x�W = 1�

)
dz1 dz2�(11)

subject to the inequality constraints

f �·� ·�x�≥ f �·� ·�x�W = 1�Pr�W = 1�x��(12)

and the linear restrictions∫
f
(·� z2∣∣x)dz2 = f1�·�x��(13)

∫
f
(
z1� ·

∣∣x)dz1 = f2�·�x��(14)

The function h ' �q�x��
�→
 is defined by

h�a�=



−
∫ 2q�x�
a

g−1�q�x�/s�ds� q�x� < a < 2q�x��

∫ a

2q�x�
g−1�q�x�/s�ds� 2q�x�≤ a�

(15)

with q�x� = Pr�W = 1�x� and g�·� a differentiable, strictly increasing function with lima→−
 g�a� = 0
and lima→
 g�a�= 1.
Then the first-order conditions for the maximum are equivalent to the system of integral equations

∫ Pr�W = 1�x�
g�k0�x�+k1�·� x�+k2�z2x��

f
(
�·� z2

∣∣x�W = 1)dz2 = f1�·�x��
∫ Pr�W = 1�x�

g�k0�x�+k1�z1� x�+k2�·� x��
f
(
z1� �

∣∣x�W = 1)dz1 = f2�·�x��

with k0�x� ∈ 
�k1�·� x��k2�·� x� ∈ �1, and the normalization k1�z̄1�x��x� = k2�z̄1�x��x� = 0 for some
z̄1�x�� z̄2�x� in S�x�.

9 Luenberger (1969) discusses functional optimization problems.
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Proof: The two equality restrictions can be written as T1�f �= 0�T2�f �= 0 with 0 the null element
in �1, and

T1�f �=
∫
f
(·� z2∣∣x)dz2− f1�·�x��(16)

T2�f �=
∫
f
(
z1� ·

∣∣x)dz1− f2�·�x��(17)

The combined restrictions can be expressed as T �f � = 0 with T a mapping from � to �1 ×�1.
The mappings T1�T2 are linear and hence Fréchet differentiable. The Fréchet derivatives of T1�T2
are linearly independent for all f ∈ � , so that all f that satisfy the restrictions are regular points.
This linear independence follows from the fact that T ′

1�f � is a function of z1�T
′
2�f � of z2. Linear

independence follows if the joint conditional distribution of Z1�Z2 given X is nonsingular. Because
h is differentiable the maximand is Fréchet differentiable. The necessary condition for a maximum at
f is that f is a stationary point of the Lagrangian functional with �k1�·� x��k2�·� x�� ∈�1×�1, which
is the dual of the image space of T :

L�f �=
∫∫

f
(
z1� z2

∣∣x�W = 1)Pr�W = 1�x�

·h
(

f �z1� z2�x�
f �z1� z2�x�W = 1�Pr�W = 1�x�

)
dz1 dz2

+
∫
k1
(
z1� x

)(
f1
(
z1
∣∣x)− ∫

f
(
z1� z2

∣∣x)dz2)dz1
+

∫
k2
(
z2� x

)(
f2
(
z2
∣∣x)− ∫

f
(
z1� z2

∣∣x)dz1)dz2�
The stationary point is found by setting the Fréchet derivative of the Lagrangian with respect to f
equal to 0, i.e. the zero element in � . The Fréchet derivatives follow directly from the observations
that, e.g.,

∫
k1
(
z1� x

)(
f1
(
z1
∣∣x)− ∫

f
(
z1� z2

∣∣x)dz2)dz1
=

∫
k1
(
z1� x

)
f1
(
z1
∣∣x)dz1− ∫∫

f
(
z1� z2

∣∣x)k1(z1� x)dz1 dz2
is linear in f and hence its Fréchet derivative is equal to k1�·� x�. Hence the stationary point satisfies
both

h′
(

f �·� ·�x�
f �·� ·�x�W = 1�

)
= k1�·� x�+k2�·� x��(18)

and the equality constraints. This determines the functions k1�·� x� and k2�·� x� up to a normalization
(we can add and subtract a constant). To obtain a unique solution we set k1�z̄1�x��= k2�z̄1�x��= 0
for some z̄1�x�� z̄2�x� in S�x�. This determines k0�x�.
Substitution of h yields

f �·� ·�x�= f �·� ·� x�W = 1�Pr�W = 1�x�
g�k1�·� x�+k2�·� x�+k0�x��

�(19)

and substitution of this solution in the equality restrictions gives the desired result.

Next we prove the following Lemma.

Lemma 2: The maximization problem in Lemma 1 has a unique solution f ∈ � .
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Proof: The function h is strictly concave on �Pr�W = 1�x��
�. Hence, in Lemma 1 we maximize
a strictly concave functional on a convex set defined by inequality and equality constraints. In such
a maximization problem, the necessary first order conditions are also sufficient for a unique global
maximum. Hence, it suffices to show that there is an f that satisfies the first order conditions, and
this is equivalent to the existence of a solution to the system of simultaneous integral equations:

∫ Pr�W = 1�x�
g�k0�x�+k1�·� x�+k2�z2� x��

f
(·� z2∣∣x�W = 1)dz2 = f1�·�x��

∫ Pr�W = 1�x�
g�k0�x�+k1�z1� x�+k2�·� x��

f
(
z1� ·

∣∣x�W = 1)dz1 = f2�·�x��

The left-hand side of these equations is monotonically decreasing in k0�x�+k1�·� x�+k2�·� x� and
hence in k1�·� x�, and k2�·� x�. Moreover, if k0�x�+k1�·� x�+k2�·� x� → 
, then the left-hand side
is equal to f1�·�x�W = 1� and f2�·�x�W = 1�, respectively, and hence not larger than the right-hand
side. If k0�x�+k1�·� x�+k2�·� x� → −
, the left-hand side will become larger than the right-hand
side. Because the cone of nonnegative functions in the Hilbert space of square integral functions is
regular, we can use Theorem 8.3.17 of Hutson and Pym (1980) to show that these equations have a
solution. This solution is uniformly bounded from below. This implies that f defined by

f
(
z1� z2

∣∣x)= f �z1� z2�x�W = 1�
g�k0�x�+k1�z1� x�+k2�z2� x��

(20)

satisfies both the first-order conditions and the inequality constraints.
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