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1 A short introductional note

This script is a personal compilation of introductory topics about discrete
time Markov chains on some countable state space. The choice of a countable
state space is motivated by the fact that it is mathematically richer than the
finite state space case, but still not as technically as general state space case.
Furthermore, it allows for an easier generalization to the general state space
Markov chains. Of course, this is only an introductory script that obviously
lacks a lot of (important) topic— we explicitly encourage any interested
student to study further, by referring to the literature provided at the end
of this script. Furthermore we did our best to avoid any errors, but for
sure there are still some typos out there, if you spot one, do not hesitate to
contact us.

Some additional information may be found under URL:

http://biocomputing.mi.fu-berlin.de/Lehre/MarkovKetten WS04/.

Wilhelm Huisinga & Eike Meerbach
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2 Setting the scene

2.1 Introductory example

We will start with two examples that illustrate some features of Markov
chains.
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Figure 1: A particle (red) on a two-dimensional finite grid with N = 20.
The smaller (blue) dots indicate all possible positions (the state space).

Some particle moving in a box. Imagine some particle in a test tube
filled with gas or liquid. The particle will move “randomly” in the test tube
driven by forces due to collisions with much smaller particles, i.e., the par-
ticles of the gas or the liquid. [You might know that this sort of movement
is in general modelled by a stochastic process called Brownian motion, and
in fact Brownian motion is an example of a Markov process in continuous
time.] To keep things simple, we assume that our particle is moving on a
two-dimensional finite grid such that each possible position can be labelled
by coordinates X = (a, b) with a, b ∈ {0, 1, 2, . . . , N}. The set of possible
positions S = {(a, b)|a, b ∈ {0, 1, 2, . . . , N}} is called state space, an ele-
ment of S is called a state (Fig. 1). The movement of a single particle at
the discrete instances of time t = 0, 1, 2, . . . is then described by a sequence
of states X0, X1, X2, . . ..

If we want to analyze or simulate the “randomly” movement of the par-
ticle, we have to specify the term “randomly”, and our first attempt is based
on the following

Moving rule: Assume that the particle is at position Xk =
(ak, bk) at time k. Then, at time k+1 it moves to any other posi-
tion Xk+1 = (ak+1, bk+1) with equal probability p = 1/(N + 1)2.

At the beginning, we just place the particle randomly at one of the states
with equal probability. Then, it moves around according to the specified
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moving rule.

A possible observation/realization of the particle moving around could
be:

X0 = (11, 11), X1 = (11, 20), X3 = (1, 2), X4 = (15, 7), X5 = (3, 6) . . .

The dynamic of the particle we just specified is already a Markov chain
on the state space S. In fact, it is a very special Markov chain, since the
position Xk+1 of the particle at time k + 1 does not depend on the previous
position at time k; it is in fact an independent chain. As a model of some
particle moving around, it is very “unnatural”: It is rather unlikely that
the particle moves from every position to every other position with equal
probability. Rather positions closer to the current position of the particle
should have a higher probability to be visited by the particle than states at
more distance. We can incorporate this in our moving rule, by introducing
some dependence of the future position on the current one.

This time, the particle moves around according to a different

Moving rule: Assume that the particle is at position Xk =
(ak, bk) at time k. Then, the particle moves with equal prob-
ability to one of its neighboring positions, where two positions
(a, b) ∈ S and (c, d) ∈ S are called neighboring, if |a− c| ≤ 1 and
|b− d| ≤ 1.

This time, the particle is moving more “naturally”, since the future position
of the particle depends on the current one. This ”memory effect”, sometimes
stated as “The future depends on the past only through the present”, is
known as the Markov property. Similar dependence on the history might
be used to model the evolution of stock prices, the behavior of telephone
customers, molecular networks etc.

2.2 Markov property, stochastic matrix, realization, density
propagation

When dealing with randomness, some probability space (Ω,A,P) is usually
involved; Ω is called the sample space, A the set of all possible events
(the σ–algebra) and P is some probability measure on Ω. Usually, not
much is known about the probability space, rather the concept of random
variables is used to deal with randomness. A function X0 : Ω → S is called
a (discrete) random variable, if for every y ∈ S:

{X0 = y} := {ω ∈ Ω : X0(ω) = y} ∈ A.

In the above definition, the set S is called the state space, the set of all
possible “outcomes” or “observations” of the random phenomena. Through-
out this manuscript, the state space is assumed to be countable; hence it is
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either finite, e.g., S = {0, . . . , N} for some N ∈ N or countable infinite, e.g.,
S = N. Elements of the state space are denoted by x, y, z, . . . The definition
of a random variable is motivated by the fact, that it is well-defined to assign
a probability to the outcome or observation X0 = y:

P[X0 = y] = P[{X0 = y}] = P[{ω ∈ Ω : X0(ω) = y}].

The function µ0 : S → R with µ0(y) = P[X0 = y] is called the distribution
or law of the random variable X0. Most of the time, a random variable is
characterized by its distribution rather than as a function on the sample
space Ω.

A sequence X = {Xk}k∈N of random variables Xk : Ω → S is called
a discrete-time stochastic process on the state space S. The index k
admits the convenient interpretation as time: if Xk = y, the process is said
to be in state y at time k. For some given ω ∈ Ω, the S–valued sequence

X(ω) = {X0(ω), X1(ω), X2(ω), . . .}

is called a realization (trajectory, sample path) of the stochastic process
X associated with ω. In order to define the stochastic process properly, it
is necessary to specify all distributions of the form

P[Xm = xm, Xm−1=xm−1, . . . , X0 = x0]

for m ∈ N and x0, . . . , xm ∈ S. This, of course, in general is a hard task.
As we will see below, for Markov chains it can be done quite easily.

Definition 2.1 (Homogeneous Markov chain) A discrete-time stochas-
tic process {Xk}k∈N on a countable state space S is called a homogeneous
Markov chain, if the so–called Markov property

P[Xk+1 = z|Xk = y, Xk−1 = xk−1, . . . , X0 = x0] = P[Xk+1 = z|Xk = y] (1)

holds for every k ∈ N, x0, . . . , xk−1, y, z ∈ S, implicitly assuming that both
sides of equation (1) are defined1 and, moreover, the right hand side of (1)
does not depend on k, hence

P[Xk+1 = z|Xk = y] = . . . = P[X1 = z|X0 = y]. (2)

For a given homogeneous Markov chain, the function P : S× S → R with

P (y, z) = P[Xk+1 = z|Xk = y]
1The conditional probability P[A|B] is only defined if P[B] 6= 0. We will assume this

throughout the manuscript whenever dealing with conditional probabilities.
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is called the transition function2; its values P (y, z) are called the (condi-
tional) transition probabilities from y to z. The probability distribution
µ0 satisfying

µ0(x) = P[X0 = x]

is called the initial distribution. If there is a single x ∈ S such that
µ0(x) = 1, then x is called the initial state.

Often, one writes Pµ0 or Px to indicate that the initial distribution or the
initial state is given by µ0 or x, respectively. We also define the conditional
transition probability

P (y, C) =
∑

z∈C

P (y, z).

from some state y ∈ S to some subset C ⊂ S.

There is a close relation between Markov chains, transition functions
and stochastic matrices that we want to outline next. This will allow us to
easily state a variety of examples of Markov chains. To do so, we need the
following

Definition 2.2 A matrix P = (pxy)x,y∈S is called stochastic, if

pxy ≥ 0, and
∑

y∈S

pxy = 1 (3)

for all x, y ∈ S. Hence, all entries are non–negative and the row-sums are
normalized to one.

By Def. 2.1, every Markov chain defines via its transition function a
stochastic matrix. The next theorem states that a stochastic matrix also
allows to define a Markov chain, if additionally the initial distribution is
specified. This can already be seen from the following short calculation: A
stochastic process is defined in terms of the distributions

Pµ[Xm = xm, Xm−1=xm−1, . . . , X0 = x0]

for every m ∈ N and x0, . . . , xm ∈ S. Exploiting the Markov property, we
deduce

Pµ0 [Xm = xm, Xm−1=xm−1, . . . , X0 = x0]
= P[Xm = xm|Xm−1 = xm−1, . . . , X0 = x0] · . . .

P[X2 = x2|X1 = x1, X0 = x0] ·P[X1 = x1|X0 = x0] ·Pµ0 [X0 = x0]
= P[Xm = xm|Xm−1 = xm−1] · . . . ·P[X2 = x2|X1 = x1]

P[X1 = x1|X0 = x0] ·Pµ0 [X0 = x0]
= P (xm−1, xm) · · ·P (x1, x2) · P (x0, x1) · µ(x0).

2Alternative notations are stochastic transition function, transition kernel, Markov
kernel.
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Hence, to calculate the probability of a specific sample path, we start with
the initial probability of the first state and successively multiply by the
conditional transition probabilities along the sample path. Theorem 2.3 [7,
Thm. 3.2.1] will now make this more precise.

Remark. Above, we have exploited Bayes’s rules. There are three of
them [2]:
Bayes’s rule of retrodiction. With P[A] > 0, we have

P[B|A] =
P[A|B] ·P[B]

P[A]
.

Bayes’s rule of exclusive and exhaustive causes. For a partition
of the state space

S = B1 ∪B2 ∪ . . .

and for every A we have

P[A] =
∑

k

P[A|Bk] ·P[Bk].

Bayes’s sequential formula. For any sequence of events A1, . . . , An,

P[A1, . . . , An] = P[A1] ·P[A2|A1] ·P[A3|A2, A1] · . . . ·P[An|An−1, . . . , A1].

Theorem 2.3 For some given stochastic matrix P = (pxy)x,y∈S and some
initial distribution µ0 on a countable state space S, there exists a probability
space (Ω,A,Pµ0) and a Markov chain X = {Xk}k∈N satisfying

Pµ0 [Xk+1 = y|Xk = x,Xk−1 = xk−1 . . . , X0 = x0] = pxy.

for all x0, . . . , xk−1, x, y ∈ S.

Often it is convenient to specify only the transition function of a Markov
chain via some stochastic matrix, without further specifying its initial dis-
tribution. This would actually correspond to specifying a family of Markov
chains, having the same transition function but possibly different initial dis-
tributions. For convenience, we will not distinguish between the Markov
chain (with initial distribution) and the family of Markov chain (without
specified initial distribution) in the sequel. No confusion should result from
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this usage.

Exploiting Theorem 2.3, we now give some examples of Markov chains
by specifying their transition function in terms of some stochastic matrix.

Example 2.4 1. Two state Markov chain. Consider the state space
S = {0, 1}. For any given parameters p0, p1 ∈ [0, 1] we define the
transition function as

P =
(

1− p0 p0

p1 1− p1

)
.

Obviously, P is a stochastic matrix—see cond. (3). The transition
matrix is sometimes represented by its transition graph G, whose
vertices (nodes) are identified with the states of S. The graph has an
oriented edge from node x to node y with weight p, if the transition
probability from x to y equals p, i.e., P (x, y) = p. For the two state
Markov chain, the transition graph is shown in Fig. 2.
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Figure 2: Transition graph of the two state Markov chain

2. Random walk on N. Consider the state space S = {0, 1, 2, . . .} and
parameters pk ∈ (0, 1) for k ∈ N. We define the transition function as

P =




1− p0 p0

1− p1 0 p1

0 1− p2 0 p2

. . . . . . . . .




Again, P is a stochastic matrix. The transition graph corresponding
to the random walk on N is shown in Fig. 3.
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Figure 3: Transition graph of the random walk on N.
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3. A nine state Markov chain. Consider the state space S = {1, . . . , 9}
and a transition graph specified in Fig. 4. If, as usually done, non–zero
transition probabilities between states are indicated by an edge, while
omitted edges are assumed to have zero weight, then the corresponding
transition function has the form

P =




p12

p23

p31 p35

p43 p44

p52 p54 p55 p56

p65 p66 p68

p74 p76 p77

p87 p88 p89

p98 p99




Assume that the parameters pxy are such that P satisfies the two con-
ditions (3). Then, P defines a Markov chain on the state space S.

5
62

1 3
8

9
74

Figure 4: Transition graph of a nine state Markov chain.

2.3 Realization of a Markov chain

We now address the question of how to simulate a given Markov chain
X = {Xk}k∈N,i.e., how to compute a realization X0(ω), X1(ω), . . . for some
ω ∈ Ω. With this respect, the following theorem will be of great use.

Theorem 2.5 (Canonical representation) [2, Sec. 2.1.1] Let {ξk}k∈N
denote some independent and identically distributed (i.i.d.) sequence of ran-
dom variables with values in some space Y, and denote by X0 some random
variable with values in S and independent of {ξk}k∈N. Consider some func-
tion f : S ×Y → S. Then the stochastic dynamical system defined by
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the recurrence equation

Xk+1 = f(Xk, ξk) (4)

defines a homogeneous Markov chain X = {Xk}k∈N on the state space S.

As a simple illustration of the canonical representation, let (ξk)k∈N denote
a sequence of i.i.d. random variables, independent of X0, taking values in
Y = {−1,+1} with probability

P[ξk = 1] = q and P[ξk = −1] = 1− q

for some q ∈ (0, 1). Then, the Markov chain {Xk}k∈N on S = Z defined by

Xk+1 = Xk + ξk

corresponding to f : Z × Y → Z with f(x, y) = x + y is a homogeneous
Markov chain, called the random walk on Z (with parameter q).

Given the canonical representation, the transition function P of the
Markov chain is defined by

P (x, y) = P[f(x, ξ0) = y].

The proof is left as an exercise. On the other hand, if some Markov chain
{Xk}k∈N is given in terms of its stochastic transition matrix P , we can
define the canonical representation (4) for {Xk}k∈N as follows: Let {ξk}k∈N
denote an i.i.d. sequence of random variables uniformly distributed on [0, 1].
Then, the recurrence relation Xk+1 = f(Xk, ξk) holds for f : S× [0, 1] → S
with

f(x, u) = z for
z−1∑

y=1

P (x, y) ≤ u <
z∑

y=1

P (x, y). (5)

Note that every homogeneous Markov chain has a representation (4) with
the function f defined in (5).

Two particular classes of functions f are of further interest: If f is a
function of x alone and does not depend on u, then the thereby defined
Markov chain is in fact deterministic and the recurrence equation is called a
deterministic dynamical system with possibly random initial data. If,
however, f is a function of u alone and does not depend on x, then the re-
currence relation defines a sequence of independent random variables. This
way, Markov chains are a mixture of deterministic dynamical systems and
independent random variables.
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Now, we come back to the task of computing a realization of a Markov
chain. Here, the canonical representation proves extreme useful, since it
directly implies an algorithmic realization: In order to simulate a Markov
chain {Xk}k∈N, choose a random number x0 according to the law of X0 and
choose a sequence of random numbers w0, w1, . . . according to the law of ξ0

(recall that the ξk are i.i.d.). Then, the realization x0, x1, . . . of {Xk}k∈N
is recursively defined by xk+1 = f(xk, wk). If the Markov chain is specified
in terms of some transition function P and some initial distribution X0,
then the same holds with the sequence of ξk being i.i.d. uniform in [0, 1)
distributed random variables and f is defined in terms of P via relation (5).

2.4 The evolution of distributions under the Markov chain

One important task in the theory of Markov chains is to determine the
distribution of the Markov chain while it evolves in time. Given some initial
distribution µ0, the distribution µk of the Markov chain at time k is given
by

µk(z) = Pµ0 [Xk = z]

for every z ∈ S. A short calculation reveals

µk(z) = Pµ0 [Xk = z]

=
∑

y∈S

Pµ0 [Xk−1 = y] P[Xk = z|Xk−1 = y]

=
∑

y∈S

µk−1(y) P (y, z)

To proceed we introduce the notion of transfer operators, which is closely
related to transition functions and Markov chains.

Given some distribution µ : S → C, we define the total variation
norm || · ||TV by

||µ||TV =
∑

x∈S

|µ(x)|.

Based on the total variation norm, we define the function space

M = {µ : S → C : ||µ||TV < ∞}.

Note that M equipped with the total variation norm is a Banach space.
Given some Markov chain in terms of its transition function P , we define
the transfer operator P : M → M acting on distributions by µ 7→ µP
with

(µP )(y) =
∑

x∈S

µ(x) P (x, y).
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We are aware of the fact that the term P has multiple meanings. It serves
to denote (i) some transition function corresponding to a Markov chain, (ii)
some stochastic matrix, and (iii) some transfer operator. However, no con-
fusion should result form the multiple usage, since it should be clear from
the context what meaning we are referring to. Moreover, actually, the three
meanings are equivalent expressions of the same fact.

Given some transfer operator P , we define the kth power P k of P recur-
sively by µP k = (µP )P k−1 for k > 0 and P 0 = Id, the identity operator.
As can be shown, P k is again a transfer operator associated with the k-step
Markov chain Y = (Yn)n∈N with Yn = Xkn. The corresponding transition
function Q is identical to the so-called k–step transition probability

P k(x, y) = P[Xk = y|X0 = x], (6)

denoting the (conditional) transition probability from x to y in k steps of
the Markov chain X. Thus, we have

(µP k)(y) =
∑

x∈S

µ(x) P k(x, y).

In the notion of stochastic matrices, P k is simply the kth power of the
stochastic matrix P .

Exploiting the notion of transfer operators acting on distributions, the
evolution of distributions under the Markov chain can be formulated quite
easily. In terms of powers of P , we can rewrite µk as follows

µk = µk−1 P 1 = µk−2 P 2 = . . . = µ0 P k. (7)

There is an important relation involving k–step transition probability, namely
the Chapman-Kolmogorov equation stating that

Pm+k(x, z) =
∑

y∈S

Pm(x, y)P k(y, z) (8)

holds for every m, k ∈ N and x, y, z ∈ S. In terms of transfer operators, the
Chapman-Kolmogorov equation reads Pm+k = PmP k, which is somehow an
obvious statement.

To illustrate the evolution of densities, consider our nine state Markov
chain with suitable chosen parameters for the transition matrix. The initial
distribution µ0 and some iterates, namely, µ1, µ3, µ15, µ50 are shown in
Figure 5. We observe that µk changes while evolving in time. However,
there also exist distributions that do not change in time; as we will see in
the course of this manuscript, these are of special interest.
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Figure 5: Evolution of some density µk in time. Top: at time k = 0, 1, 3
(left to right). Bottom: at time k = 15, 50. The stationary density is shown
at the bottom, right.

Definition 2.6 A probability distribution π satisfying

Pπ[X1 = y] = π(y) (9)

is called a stationary distribution or invariant probability measure
of the Markov chain {Xk}k∈N. Equivalently, it is

π = πP (10)

in terms of its transfer operator P .

Note that π = πP implies π = πP k to hold for every k ∈ N. To illustrate
the above definition, we have computed the stationary density for the nine
state Markov chain (see Figure 5). Moreover, we analytically compute the
stationary distribution of the two state Markov chain. Here, π = (π(1), π(2))
has to satisfy

π = π

(
1− a a

b 1− b

)

resulting in the two equations

π(1) = π(1)(1− a) + π(2)b
π(2) = π(1)a + π(2)(1− b).
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This is a dependent system reducing to the single equation π(1)a = π(2)b,
to which the additional constraint π(1) + π(2) = 1 must be added (why?).
We obtain

π =
(

b

a + b
,

a

a + b

)
.

Stationary distributions need neither to exist (as we will see below) nor
they need to be unique! As an example for the latter statement, consider a
Markov chain with the identity matrix as transition function. Then, every
probability distribution is stationary.

When calculating stationary distributions, two strategies can be quite
useful. The first one is based on the interpretation of eq. (9) as an eigen-
value problem, the second one is based on the notion of the probability flux.
While we postpone the eigenvalue interpretation, we will now exploit the
probability flux idea in order to calculate the stationary distribution of the
random walk on N.

Assume that the Markov chain exhibits a stationary distribution π and
let A,B ⊂ S denote two subsets of the state space. Then, the probability
flux from A to B is defined by

fluxπ(A, B) = Pπ[X1 ∈ B,X0 ∈ A] (11)

=
∑

x∈A

π(x)P (x, B) =
∑

x∈A

∑

y∈B

π(x)P (x, y).

For a Markov chain possessing a stationary distribution, the flux from some
subset A to its complement Ac is somehow balanced:

Theorem 2.7 ([3]) Let {Xk}k∈N denote a Markov chain with stationary
distribution π and A ⊂ S an arbitrary subset of the state space. Then

fluxπ(A,Ac) = fluxπ(Ac, A),

hence the probability flux from A to its complement Ac is equal to the reverse
flux from Ac to A.

Proof: The proof is left as an exercise. ¤

Now, we want to exploit the above theorem to calculate the stationary
distribution of the random walk on N. For sake of illustration, we take
ak = p ∈ (0, 1) for k ∈ N. Hence, with probability p the Markov chain
moves to the right, while with probability 1 − p it moves to the left (with
exception of the origin). Then, the equation of stationarity (9) reads

π(0) = π(0)(1− p) + π(1)(1− p) and
π(k) = π(k − 1)p + π(k + 1)(1− p)
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for k > 0. The first equation can be rewritten as π(1) = π(0)p/(1 − p).
Instead of exploiting the second equation (try it), we use Theorem 2.7 to
proceed. For some k ∈ N consider A = {0, . . . , k} implying Ac = {k +1, k +
2, . . .}; then

fluxπ(A,Ac) =
∑

x∈A

π(x)P (x,Ac) = π(k)p

fluxπ(Ac, A) =
∑

x∈Ac

π(x)P (x, A) = π(k + 1)(1− p)

It follows from Theorem 2.7, that

π(k)p = π(k + 1)(1− p)

and therefore

π(k + 1) = π(k)
(

p

1− p

)
= . . . = π(0)

(
p

1− p

)k+1

.

The value of π(0) is determined by demanding that π is a probability dis-
tribution:

1 =
∞∑

k=0

π(k) = π(0)
∞∑

k=0

(
p

1− p

)k

.

Depending on the parameter p, we have

∞∑

k=0

(
p

1− p

)k

=

{
∞; if p ≥ 1/2
(1− p)/(1− 2p); if p < 1/2.

(12)

Thus, we obtain for the random walk on N the following dependence on
the parameter p:

• for p < 1/2, the stationary distribution is given by

π(0) =
1− 2p

1− p
and π(k) = π(0)

(
p

1− p

)k

• for p ≥ 1/2 there does not exist a stationary distribution π, since the
normalisation in eq. (12) fails.

A density or measure π satisfying π = πP , without the requirement∑
π(x) = 1, is called invariant. Trivially, every stationary distribution is

invariant, but the reverse statement is not true. Hence, for p ≥ 1/2, the
family of mesures π with π(0) ∈ R+ and π(k) = π(0)p/(1− p) are invariant
measures of the random walk on N (with parameter p) .
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2.5 Some key questions concerning Markov chains

1. Existence of unique invariant measure and corresponding convergence
rates

µn −→ π or Pn = 1πt +O(nm2 |λ2|n).
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2. Evaluation of expectation values and corresponding convergence rates,
including sampling of the stationary distribution

1
n

n∑

k=1

f(Xk) −→
∑

x∈S

f(x)π(x)

3. Identification of macroscopic properties like, e.g., cyclic or metastable
behaviour, coarse graining of the state space.

4. Calculation of return and stopping times, exit probabilities and prob-
abilities of absorption.

σD(x) = inf{t > 0 : Xt /∈ D, X0 = x}
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3 Communication and recurrence

3.1 Irreducibility and (A)periodicity

This section is about the topology of Markov chains. We start with some

Definition 3.1 Let {Xk}k∈N denote a Markov chain with transition func-
tion P , and let x, y ∈ S denote some arbitrary pair of states.

1. The state x has access to the state y, written x → y, if

P[Xm = y|X0 = x] > 0

for some m ∈ N that possibly depends on x and y. In other words, it
is possible to move (in m steps) from x to y with positive probability.

2. The states x and y communicate, if x has access to y and y access
to x, denoted by x ↔ y.

3. The Markov chain (equivalently its transition function) is said to be
irreducible, if all pairs of states communicate.

The communication relation ↔ can be exploited to analyze the Markov
chain in more detail. It is easy to prove that communication relation is a
so–called equivalence relation, hence it is

1. reflexive: x ↔ x

2. symmetric: x ↔ y implies y ↔ x,

3. transitive: x ↔ y and y ↔ z imply x ↔ z.

Recall that every equivalence relation induces a partition S = C0∪· · ·∪Cr−1

of the state space S into so–called equivalence classes defined as

Ck = [xk] := {y ∈ S : y ↔ xk}

for k = 0, . . . , r − 1 and suitable states x0, . . . , xr−1 ∈ S. In the theory of
Markov chains, the elements C0, . . . , Cr−1 of the induced partition are called
communication classes.

Why are we interested in communication classes? The partition into
communication classes allows to break down the Markov chain into easier
to handle and separately analyzable subunits. This might be interpreted
as finding some normal form for the Markov chain. If there is only one
communication class, hence all states communicate, then nothing can be
further partitioned, and the Markov chain is already in its normal form.
There are some additional properties of communication classes:
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Definition 3.2 A communication class C is called closed (invariant or
absorbing) if none of the states in C has access to the complement Cc = S\C
of C, i.e, for every x ∈ C and every y ∈ Cc we have x 9 y. In terms of
transition probabilities, this is equivalent to

P[Xm ∈ Cc|X0 = x] = 0

for every x ∈ C and every m ≥ 0.

Now assume that the Markov chain is not irreducible. Let C0, . . . , Cr−1

denote the closed communication classes and D the collection of all remain-
ing communication classes. Then

S =
(
C0 ∪ . . . ∪ Cr−1

)
∪D. (13)

The following proposition states that we may restrict the Markov chain to
its closed communication classes that hence can be analyzed separately [7,
Prop. 4.1.2].

Proposition 3.3 Suppose that C is some closed communication class. Let
PC denote the transition function P = (P (x, y))x,y∈S restricted to C, i.e.,

PC =
(
P (x, y)

)
x,y∈C

.

Then there exists an irreducible Markov chain {Yn}n∈N whose state space is
C and whose transition function is given by PC .

Proof : We only have to check that PC is a stochastic matrix. Then the
Proposition follows from Theorem 2.3. ¤

According to [7, p.84], for reducible Markov chains we can analyze at least
the closed subsets in the decomposition (13) as separate chains. The power
of this decomposition lies largely in the fact that any Markov chain on a
countable state space can be studied assuming irreducibility. The irreducible
parts can then be put together to deduce most of the properties of the orig-
inal (possible reducible) Markov chain. Only the behavior of the remaining
part D has to be studied separately, and in analyzing stability properties
the part of the state space corresponding to D may often be ignored.

For the states x ∈ D only two things can happen: either they reach one
of the closed communication classes Ci, in which case they get absorbed, or
the only other alternative, the Markov chain leaves every finite subset of D
and “heads to infinity” [7, p.84].

Another important property is periodicity, somehow a leftover of the
deterministic realm within the stochastic world of Markov chains. It is
best illustrated by the following theorem, which we prove at the end of this
section:
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Figure 6: Normal form of the transition function for r = 3.

Theorem 3.4 (cyclic structure [2]) For any irreducible Markov chain
{Xk}k∈N, there exists a unique partition of the state space S into d so–called
cyclic classes E0, . . . , Ed−1 such that

P[X1 ∈ Ek+1|X0 = x] = 1

for every x ∈ Ek and k = 0, . . . , d− 1 (by convention Ed = E0). Moreover,
d is maximal in the sense that there exists no partition into more than d
classes with the same property.

Hence the Markov chain moves cyclically in each time step from one
class to the next. The number d in Theorem 3.4 is called the period of
the Markov chain (respectively the transition function). If d = 1, then the
Markov chain is called aperiodic. Later on, we will see, how to identify
(a)periodic behavior and, for d > 1 the cyclic classes.

The transition matrix of a periodic irreducible Markov chain has a special
structure. After renumbering of the states of S (if necessary), the transition
function has a block structure as illustrated in Fig. 7. There is a more
arithmetic but much less intuitive definition of the period that in addition
does not rely on irreducibility of the Markov chain.

Definition 3.5 ([2]) The period d(x) of some state x ∈ S is defined as

d(x) = gcd{k ≥ 1 : P[Xk = x|X0 = x] > 0},

with the convention d(x) = ∞, if P[Xk = x|X0 = x] = 0 for all k ≥ 1. If
d(x) = 1, then the state x is called aperiodic.

Hence, different states may have different periods. As the following
theorem states, this is only possible for reducible Markov chains [2].
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P = E1

E2

E0

Figure 7: Block structure of a periodic, irreducible Markov chain with period
d = 3.

Theorem 3.6 The period is a class property, i.e., all states of a communi-
cation class have the same period.

Proof: Let C be a communication class and x, y ∈ C. As a consequence,
there exist k,m ∈ N with P k(x, y) > 0 and Pm(y, x) > 0. Moreover,
d(x) < ∞ and d(y) < ∞. From the Chapman-Kolmogorov Equation (8) we
get

P k+j+m(x, x) ≥ P k(x, y)P j(y, y)Pm(y, x)

for all j ∈ N. Now, for j = 0 we infer that d(x) divides k + m, in short
d(x)|(k + m), since P k(x, y)Pm(y, x) > 0. Whereas choosing j such that
P j(y, y) > 0 yields d(x)|(k+ j +m). Therefore we have d(x)|j, which means
that d(x)|d(y). By symmetry of the argument, we obtain d(y)|d(x), which
implies d(x) = d(y). ¤

In particular, if the Markov chain is irreducible, all states have the same
period d, and we may call d the period of the Markov chain (cf. Theorem 3.4).
Combining Definition 3.5 with Theorem 3.6, we get the following useful
criterion for aperiodicity:

Corollary 3.7 An irreducible Markov chain {Xk}k∈N is aperiodic, if there
exists some state x ∈ S such that P[X1 = x|X0 = x] > 0.

We now start to prove Theorem 3.4. The proof will be a simple conse-
quence of the following three propositions.

Proposition 3.8 Let {Xk}k∈N be an irreducible Markov chain with tran-
sition function P and period d. Then, for any states x, y ∈ S, there is an
k0 ∈ N and m ∈ {0, . . . , d− 1}, possibly depending on x and y, such that

P kd+m(x, y) > 0

for every k ≥ k0.
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Proof: For now asumme that x = y, then, by the Chapman-Kolmogorov
equation (8), the set Gx = {k ∈ N : P k(x, x) > 0} is closed under addition,
since k, k′ ∈ Gx implies

P k+k′(x, x) ≥ P k(x, x)P k′(x, x) > 0,

and therefore k + k′ is an element of Gx. This enables us to use a number
theoretic result [9, Appendix A]: A subset of the natural numbers which is
closed under addition, contains all, except a finite number, multiples of its
greatest common divisor. By definition, the gcd of Gx is the period d, so
there is a k0 ∈ N with P kd(x, x) > 0 for k ≥ k0. Now, if x 6= y then
irreducibility of the Markov chain ensures that there is an m ∈ N with
Pm(x, y) > 0 and therefore

P kd+m(x, y) ≥ P kd(x, x)Pm(x, y) > 0

for k ≥ k0. Of course k0 can be chosen in such a way that m < d. ¤

Proposition 3.8 can be used to define an equivalence relation on S, which
gives rise to the cyclic classes in Theorem 3.4: Fix an arbitrary state z ∈ S
and define x and y to be equivalent, denoted by x ↔z y, if there is an
m ∈ {0, . . . , d− 1} and an k0 ∈ N such that

P kd+m(z, x) > 0 and P kd+m(z, y) > 0

for every k ≥ k0. The relation x ↔z y is indeed an equivalent relation (the
proof is left as an exercise) and therefore defines a disjoint partition of the
state space S = E0 ∪ E1 ∪ E2 ∪ . . . Ed−1 with

Em = {x ∈ S : P kd+m(z, x) > 0 for k ≥ k0}
for m = 0, . . . , d−1. The next proposition confirms that these are the cyclic
classes used in Theorem 3.4.

Proposition 3.9 Let P denote the transition function of an irreducible
Markov chain with period d and define E0, . . . , Ed−1 as above.

If P r(x, y) > 0 for some r > 0 and x ∈ Em then y ∈ Em+r, where the
indices are taken modulo d. In particular, if P (x, y) > 0 and x ∈ Em then
y ∈ Em+1 with the convention Ed = E0.

Proof : Let P r(x, y) > 0 and x ∈ Em, then there is a k0, such that
P kd+m(z, x) > 0 for all k ≥ k0, and hence

P kd+m+r(z, y) ≥ P kd+m(z, x)P r(x, y) > 0,

for every k > k0, therefore y ∈ Em+r. ¤

There is one thing left to do: We have to prove that the partition of S
into cyclic classes is unique, i.e., it does not depend on the z ∈ S chosen to
define ↔z.
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Proposition 3.10 For two given states z, z′ ∈ S, the partitions of the state
space induced by ↔z and ↔z′ are equal.

Proof: Let Em and E′
m′ denote two arbitrary subsets from the partitions

induced by ↔z and ↔z′ , respectively. We prove that the two subsets are
either equal or disjoint. Assume that Em and E′

m′ are not disjoint and
consider some x ∈ Em ∩ E′

m′ . Consider some y ∈ Em. Then, due to
Props. 3.8 there exist k0 ∈ N and s < d such that P kd+s(x, y) > 0 for
k ≥ k0. Due to 3.9, we infer y ∈ E(kd+s)+m, hence s is a multiple of d.
Consequently, P kd(x, y) > 0 for k ≥ k′′0 . By definition of E′

m′ , there is an
k′0 ∈ N, such that P kd+m′

(z′, x) > 0 for k ≥ k′0, and therefore

P (k+k′′0 )d+m′
(z′, y) ≥ P kd+m′

(z′, x)P k′′0 d(x, y) > 0

for k ≥ k′0. Equivalently, P k′d+m′
(z′, y) > 0 for k′ ≥ k′0+k′′0 , so that y ∈ E′

m′ .
¤

3.2 Recurrence and the existence of stationary distributions

In Section 3.1 we have investigated the topology of a Markov chain. Re-
currence and transience is somehow the next detailed level of investigation.
It is in particular suitable to answer the question, whether a Markov chain
admits a unique stationary distribution.

Consider an irreducible Markov chain on the state space S = N. By
definition we know that each two states communicate. Hence, given x, y ∈ S
there is always a positive probability to move from x to y and vice versa.
Consequently, there is also a positive probability to start in x and return
to x via visiting y. However, there might also exist the possibility that
the Markov chain never returns to x within finite time. This is often an
undesirable feature; in a sense the Markov chain is unstable.

A better notion of stability is that of recurrence, when the Markov chain
returns to any state infinitely often. The strongest results are obtained,
when in addition the average return time to any state is finite. We start by
introducing the necessary notions.

Definition 3.11 A random variable T : Ω → N∪{∞} is called a stopping
time w.r.t. the Markov chain {Xk}k∈N, if for every integer k ∈ N the event
{T = k} can be expressed in terms of X0, X1, . . . , Xk.

We give two prominent examples.

Example 3.12 For every c ∈ N, the random variable T = c is a stopping
time.
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The so–called first return time plays a crucial role in the analysis of
recurrence and transience.

Definition 3.13 The stopping time Tx : Ω → N ∪ {∞} defined by

Tx = min{k ≥ 1 : Xk = x},
with the convention Tx = ∞, if Xk 6= x for all k ≥ 1, is called the first
return time to state x.

Note that Tx is a random variable. Hence, for a given realization ω with
X0(ω) = y for some initial state y ∈ S, the term

Tx(ω) = min{k ≥ 1 : Xk(ω) = x}
is an integer, or infinite. Using the first return time, we can specify how
often and how likely the Markov chain returns to some state x ∈ S. The
following considerations will be of use:

• The probability of starting initially in x ∈ S and returning to x in
exactly n steps: Px[Tx = n].

• The probability of starting initially in x ∈ S and returning to x in a
finite number of steps: Px[Tx < ∞].

• The probability of starting initially in x ∈ S and not returning to x in
a finite number of steps: Px[Tx = ∞].

Of course, the relation among the three above introduced probabilities is

Px[Tx < ∞] =
∞∑

n=1

Px[Tx = n] and Px[Tx < ∞] +Px[Tx = ∞] = 1.

We now introduce the important concept of recurrence. We begin by
defining a recurrent state, and then show that recurrence is actually a class
property, i.e., the states of some communication class are either all recurrent
or none of them is.

Definition 3.14 Some state x ∈ S is called recurrent if

Px[Tx < ∞] = 1,

and transient otherwise.

The properties of recurrence and transience are intimately related to the
number of visits to a given state. To do so, we need a generalization of the
Markov property, the so-called strong Markov property. It states that
the Markov property, i.e. the independence of past and future given the
present state, holds even if the present state is determined by a stopping
time.
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Theorem 3.15 (Strong Markov property) Let {Xk}k∈N be a homoge-
nous Markov chain on a countable state space S with transition matrix P and
initial distribution µ0. Let T denote a stopping time w.r.t. the Markov chain.
Then, conditional on T < ∞ and XT = z ∈ S, the sequence (XT+n)n∈N is a
Markov chain with transition matrix P and initial state z that is independent
of X0, . . . , XT .

Proof: Let H ⊂ Ω denote some event determined by X0, . . . , XT , e.g., H =
{X0 = y0, . . . , XT = yT } for y0, . . . , yT ∈ S. Then, the event H ∩ {T = m}
is determined by X0, . . . , Xm. By the Markov property at time t = m we
get

Pµ0 [XT = x0, . . . , XT+n = xn,H, XT = z, T = m]
= Pµ0 [XT = x0, . . . , XT+n = xn|H,Xm = z]

Pµ0 [H, XT = z, T = m]
= Pz[X0 = x0, . . . , Xn = xn]Pµ0 [H, XT = z, T = m].

Hence, summation over m = 0, 1, . . . yields

Pµ0 [XT = x0, . . . , XT+n = xn,H,XT = z, T < ∞]
= Pz[X0 = x0, . . . , Xn = xn]Pµ0 [H, XT = z, T < ∞],

and dividing by Pµ0 [XT = z, T < ∞], we finally obtain

Pµ0 [XT = x0, . . . , XT+n = xn, H|XT = z, T < ∞]
= Pz[X0 = x0, . . . , Xn = xn]Pµ0 [H|XT = z, T < ∞].

This is exactly the statement of the strong Markov property. ¤

Theorem 3.15 states that if a Markov chain is stopped by any “stopping
time rule” at, say XT = x, and the realization after T is observed, it can
not be distinguished from the Markov chain started at x (with the same
transition function, of course). Now, we are ready to state the relation
between recurrence and the number of visits Ny : Ω → N ∪ {∞} to some
state y ∈ S defined by

Ny =
∞∑

k=1

1{Xk=y}.

Exploiting the strong Markov property and by induction [2, Thm. 7.2], it
can be shown that

Px[Ny = m] = Px[Ty < ∞]Py[Ty < ∞]m−1Py[Ty = ∞] (14)

for m > 0, and Px[Ny = 0] = Px[Ty = ∞].
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Theorem 3.16 Consider some state x ∈ S. Then

x is recurrent ⇔ Px[Nx = ∞] = 1 ⇔ Ex[Nx] = ∞,

and
x is transient ⇔ Px[Nx = ∞] = 0 ⇔ Ex[Nx] < ∞.

The above equivalence in general fails to hold for the denumerable, more
general state space case—here, one has to introduce the notion of Harris
recurrent [7, Chapt. 9].

Proof: Now, if x is recurrent then Px[Tx < ∞] = 1. Hence, due to eq. (14)

Px[Nx < ∞] =
∞∑

m=0

Px[Nx = m] =
∞∑

m=0

Px[Tx < ∞]mPx[Tx = ∞],

vanishes, since every summand is zero. Consequently, Px[Nx = ∞] = 1.
Now, if x is transient, then Px[Tx < ∞] < 1 and hence

Px[Nx < ∞] = Px[Tx = ∞]
∞∑

m=0

Px[Tx < ∞]m =
Px[Tx = ∞]

1−Px[Tx < ∞]
= 1.

Furthermore

Ex[Nx] =
∞∑

m=1

mPx[Nx = m] =
∞∑

m=1

mPx[Tx < ∞]mPx[Tx = ∞]

= Px[Tx < ∞]Px[Tx = ∞]
d

dPx[Tx < ∞]

∞∑

m=1

Px[Tx < ∞]m

= Px[Tx < ∞]Px[Tx = ∞]
d

dPx[Tx < ∞]
1

1−Px[Tx < ∞]

=
Px[Tx < ∞]Px[Tx = ∞]

(1−Px[Tx < ∞])2
=

Px[Tx < ∞]
1−Px[Tx < ∞]

.

Hence, Ex[Nx] < ∞ implies Px[Tx < ∞] < 1, and vice versa. The remaining
implications follow by negation. ¤

A Markov chain may possess both, recurrent and transient states as,
e.g., the two state Markov chain given by

P =
(

1− a a
0 1

)
.

for some a ∈ (0, 1). This example is actually a nice illustration of the next
proposition.
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Proposition 3.17 Consider a Markov chain {Xk}k∈N on a state space S.

1. If {Xk}k∈N admits some stationary distribution π and y ∈ S is some
transient state then π(y) = 0.

2. If the state space S is finite, then there exists at least some recurrent
state x ∈ S.

Proof: 1. Assume we had proven that Ex[Ny] < ∞ for arbitrary x ∈ S and
transient y ∈ S, which implies P k(x, y) → 0 for k →∞. Then

π(y) =
∑

x∈S

π(x)P k(x, y)

for every k ∈ N, and finally

π(y) = lim
k→∞

∑

x∈S

π(x)P k(x, y) =
∑

x∈S

π(x) lim
k→∞

P k(x, y) = 0.

where exchanging summation and limit is justified by the theorem of domi-
nated convergence (e.g., [2, Appendix]), which proves the statement. Hence,
it remains to prove Ex[Ny] < ∞.

If Py[Ty < ∞] = 0, then Ex[Ny] = 0 < ∞. Now assume that Py[Ty <
∞] > 0. Then, we obtain

Ex[Ny] =
∞∑

m=1

mPx[Ty < ∞]Py[Ty < ∞]m−1Py[Ty = ∞]

=
Px[Ty < ∞]
Py[Ty < ∞]

Ey[Ny] < ∞

where the last inequality is due to transience of y and Thm. 3.16.
2. Proof left as an excercise (Hint: Use Proposition 3.17 and think on

properties of stochastic matrices). ¤

The following theorem gives some additional insight into the relation
between different states. It states that recurrence and transience are class
properties.

Theorem 3.18 Consider two states x, y ∈ S that communicate. Then

1. If x is recurrent then y is recurrent;

2. If x is transient then y is transient.

Proof: Since x and y communicate, there exist integers m,n ∈ N such that
Pm(x, y) > 0 and Pn(y, x) > 0. Introducing q = Pm(x, y)Pn(y, x) > 0,
and exploiting the Chapman-Kolmogorov equation, we get Pn+k+m(x, x) ≥
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Pm(x, y)P k(y, y)Pn(y, x) = qP k(y, y) and Pn+k+m(y, y) ≥ qP k(x, x), for
k ∈ N. Consequently,

Ey[Ny] = Ey

[ ∞∑

k=1

1{Xk=y}

]
=

∞∑

k=1

Ey[1{Xk=y}] =
∞∑

k=1

Py[Xk = y]

=
∞∑

k=1

P k(y, y) ≤ 1
q

∞∑

k=m+n

P k(x, x) ≤ 1
q
Ex[Nx].

Analogously, we get Ex[Nx] ≤ Ey[Ny]/q. Now, the two statements directly
follow by Thm. 3.16. ¤

As a consequence of Theorem 3.18, all states of an irreducible Markov
chain are of the same nature: We therefore call an irreducible Markov chain
recurrent or transient, if one of its states (and hence all) is recurrent, re-
spectively, transient. Let us summarize the stability properties introduced
so far. Combining Theorem 3.18 and Prop. 3.17 we conclude:

• Given some finite state space Markov chain

(i) that is not irreducible: there exists at least one recurrent com-
munication class that moreover is closed.

(ii) that is irreducible: all states are recurrent, hence so is the Markov
chain.

• Given some countable infinite state space Markov chain

(i) that is not irreducible: there may exist recurrent as well as tran-
sient communication classes.

(ii) that is irreducible: all states are either recurrent or transient.

We now address the important question of existence and uniqueness
of invariant measures and stationary distributions. The following theorem
states that for irreducible and recurrent Markov chains there always exists
a unique invariant measure (up to a multiplicative factor).

Theorem 3.19 Consider an irreducible and recurrent Markov chain. For
an arbitrary state x ∈ S define µ =

(
µ(y)

)
y∈S

with

µ(y) = Ex

[
Tx∑

n=1

1{Xn=y}

]
, (15)

the expected value for the number visits in y before returning to x. Then
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1. 0 < µ(y) < ∞ for all y ∈ S. Moreover, µ(x) = 1 for the state x ∈ S
chosen in the eq. (15).

2. µ = µP .

3. If ν = νP for some measure ν, then ν = αµ for some α ∈ R.

The interpretation of eq. (15) is this: for some fixed x ∈ S the invariant
measure µ(y) is proportional to the number of visits to y before returning
to x. Note that the invariant measure µ defined in (15) in general depends
on the state x ∈ S chosen, since µ(x) = 1 per construction. This reflects the
fact that µ is only determined up to some multiplicative factor (stated in
(iii)). We further remark that eq. (15) defines for every x ∈ S some invari-
ant distribution, however for some arbitrarily given invariant measure µ, in
general there does not exist an x ∈ S such that eq. (15) holds.

Proof: 1. Note that due to recurrence of x and definition of µ we have

µ(x) = Ex

[
Tx∑

n=1

1{Xn=x}

]
=

∞∑

n=1

Ex[1{Xn=x}1{n≤Tx}]

=
∞∑

n=1

Px[Xn = x, n ≤ Tx] =
∞∑

n=1

Px[Tx = n] = Px[Tx < ∞] = 1,

which proves µ(x) = 1. We postpone the second part of the first statement
and prove

2. Observe that for n ∈ N, the event {Tx ≥ n} depends only on the
random variables X0, X1, . . . , Xn−1. Thus

Px[Xn = z,Xn−1 = y, Tx ≥ n] = Px[Xn−1 = y, Tx ≥ n]P (y, z).

Now, we have for arbitrary z ∈ S
∑

y∈S

µ(y)P (y, z) = µ(x)P (x, z) +
∑

y 6=x

µ(y)P (y, z)

= P (x, z) +
∑

y 6=x

∞∑

n=1

Px[Xn = y, n ≤ Tx] P (y, z)

= P (x, z) +
∞∑

n=1

∑

y 6=x

Px[Xn+1 = z,Xn = y, n ≤ Tx]

= Px[X1 = z] +
∞∑

n=1

Px[Xn+1 = z, n + 1 ≤ Tx]

= Px[X1 = z, 1 ≤ Tx] +
∞∑

n=2

Px[Xn = z, n ≤ Tx]

=
∞∑

n=1

Px[Xn = z, n ≤ Tx] = µ(z),
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where for the second equality we used µ(x) = 1 and for the fourth equality
we used that Xn = y, n ≤ Tx and x 6= y implies n+1 ≤ Tx. Thus we proved
µP = µ.

1. (continued) Since P is irreducible, there exist integers k, j ∈ N such
that P k(x, y) > 0 and P j(y, x) > 0 for every y ∈ S. Therefore, for every
k ∈ N and exploiting statement 2.), we have

0 < µ(x)P k(x, y) ≤
∑

z∈S

µ(z)P k(z, y) = µ(y).

On the other hand,

µ(y) =
µ(y)P j(y, x)

P j(y, x)
≤

∑
z∈S µ(z)P j(z, x)

P j(y, x)
=

µ(x)
P j(y, x)

< ∞.

Hence, the first statement has been proven.
3. The first step to prove the uniqueness of µ is to show that µ is minimal,

which means that ν ≥ µ holds for any other invariant measure ν satisfying
ν(x) = µ(x) = 1. We prove by induction that

ν(z) ≥
k∑

n=1

Px[Xn = z, n ≤ Tx] (16)

holds for every z ∈ S. Note that the right hand side of eq. (16) converges
to µ(z) as k →∞ (cmp. proof of 1.). For k = 1 it is

ν(z) =
∑

y∈S

ν(y)P (y, z) ≥ P (x, z) = Px[X1 = z, 1 ≤ Tx].

Now, assume that eq. (16) holds for some k ∈ N. Then

ν(z) ≥ ν(x)P (x, z) +
∑

y 6=x

ν(y)P (y, z)

≥ P (x, z) +
∑

y 6=x

k∑

n=1

Px[Xn = y, n ≤ Tx]P (y, z)

= Px[X1 = z, 1 ≤ Tx] +
k∑

n=1

Px[Xn+1 = z, n + 1 ≤ Tx]

=
k+1∑

n=1

Px[Xn = z, n ≤ Tx].

Therefore, eq. (16) holds for every k ∈ N, and in the limit we get ν ≥ µ.
Define λ = ν − µ; since P is irreducible, for every z ∈ S there exists some
integer k ∈ N such that P k(z, x) > 0. Thus

0 = λ(x) =
∑

y∈S

λ(y)P k(y, x) ≥ λ(z)P k(z, x),
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implying λ(z) = 0 and finally ν = µ. Now, if we relax the condition ν(x) = 1,
then statement 3. follows with c = ν(x). ¤

We already know that the converse of Theorem 3.19 is false, since there
are transient irreducible Markov chains that possess invariant measures. For
example, the random walk on N is transient for p > 1/2, but admits an
invariant measure. At the level of invariant measures, nothing more can
be said. However, if we require that the invariant measure is a probability
measure, then it is possible to give necessary and sufficient conditions. These
involve the expected return times

Ex[Tx] =
∞∑

n=1

nPx[Tx = n]. (17)

Depending on the behaviour of Ex[Tx], we further distinguish two types of
states:

Definition 3.20 A recurrent state x ∈ S is called positive recurrent, if

Ex[Tx] < ∞

and null recurrent otherwise.

In view of eq. (17) the difference between positive and null recurrence is
manifested in the decay rate of Px[Tx = n] for n → ∞. If Px[Tx = n]
decays too slowly as n → ∞, then Ex[Tx] is infinite and the state is null
recurrent. On the other hand, if Px[Tx = n] decays rapidly in the limit
n →∞, then Ex[Tx] will be finite and the state is positive recurrent.

As for recurrence, positive and null recurrence are class properties [2].
Hence, we call a Markov chain positive or null recurrent, if one of its states
(and therefore all) is positive, respectively, null recurrent. The next theorem
illustrates the usefulness of positive recurrence and gives an additional useful
interpretation of the stationary distribution.

Theorem 3.21 Consider an irreducible Markov chain. Then the Markov
chain is positive recurrent, if and only if there exists a stationary distri-
bution. Under these conditions, the stationary distribution is unique and
positive everywhere, with

π(x) =
1

Ex[Tx]
.

Hence π(x) can be interpreted as the inverse of the expected first return time
to state x ∈ S.
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Proof: Theorem 3.19 states that an irreducible and recurrent Markov chain
admits an invariant measure µ defined through (15) for an arbitrary x ∈ S.
Thus

∑

y∈S

µ(y) =
∑

y∈S

Ex

[
Tx∑

n=1

1{Xn=y}

]
= Ex



∞∑

n=1

∑

y∈S

1{Xn=y}1{n≤Tx}




= Ex

[ ∞∑

n=1

1{n≤Tx}

]
=

∞∑

n=1

Px[Tx ≥ n]

=
∞∑

n=1

∞∑

k=n

Px[Tx = k] =
∞∑

k=1

kPx[Tx = k] = Ex[Tx],

which is by definition finite in the case of positive recurrence. Therefore the
stationary distribution can be obtained by normalization of µ with Ex(Tx)
yielding

π(x) =
µ(x)
Ex(Tx)

=
1

Ex(Tx)
.

Since the state x was chosen arbitrary this is true for all x ∈ S. Uniqueness
and positivity of π follows from Theorem 3.19. On the other hand, if there
exists a stationary distribution the Markov chain must be recurrent because
otherwise π(x) would be zero for all x ∈ S according to Theorem 3.17.
Positive recurrence follows from the uniqueness of π and the consideration
above. ¤

Our considerations in the proof of Theorem 3.21 easily leads to a criteria
to distinguish positive recurrence from null recurrence.

Corollary 3.22 Consider an irreducible recurrent Markov chain {Xk}k∈N
with invariant measure µ = (µ(x))x∈S. Then

1. {Xk}k∈N positive recurrent ⇔ ∑
x∈S

µ(x) < ∞,

2. {Xk}k∈N null recurrent ⇔ ∑
x∈S

µ(x) = ∞.

Proof: The proof is left as an exercise. ¤

For the finite state space case, we have the following powerful statement.

Theorem 3.23 Every irreducible Markov chain on a finite state space is
positive recurrent and therefore admits a unique stationary distribution that
is positive everywhere.
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Proof: The proof is left as an exercise. ¤

For the general possibly non-irreducible case, the results of this section
are summarized in the next

Proposition 3.24 Let C ⊂ S denote a communication class corresponding
to some Markov chain {Xk}k∈N on the state space S.

1. If C is not closed, then all states in C are transient.

2. If C is closed and finite, then all states in C are positive recurrent.

3. If all state in C are null recurrent, then C is necessarily infinite.

Proof: The proof is left as an exercise. ¤
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4 Asymptotic behavior

The asymptotic behavior of distributions and transfer operators is closely
related to so-called ergodic properties of the Markov chain. The term er-
godicity is not consistently used in literature. In ergodic theory, it roughly
refers to the fact that space and time averages coincide (as, e.g., stated in
the strong law of large numbers by Thm. 5.1). In the theory of Markov
chain, however, the meaning is slightly different. Here, ergodicity is related
to the convergence of probability distributions ν0 in time, i.e., νk → π as
k →∞, and assumes aperiodicity as a necessary condition.

4.1 k-step transition probabilities and distributions

We prove statements for the convergence of k-step probabilities involving
transient, null recurrent and finally positive recurrent states.

Proposition 4.1 Let y ∈ S denote a transient state of some Markov chain
with transition function P . Then, for any initial state x ∈ S

P k(x, y) → 0

as k →∞. Hence, the y-th column of P k tends to zero as k →∞.

Proof: This has already been proved in the proof of Prop. 3.17 ¤

The situation is similar for an irreducible Markov chain that is null re-
current (and thus defined on a infinite countable state space due to Theo-
rem 3.23):

Theorem 4.2 (Orey’s Theorem) Let {Xk}k∈N be an irreducible null re-
current Markov chain on S. Then, for all pairs of states x, y ∈ S

P k(x, y) → 0

as k →∞.

Proof: See, e.g., [2], p.131. ¤

In order to derive a result for the evolution of k-step transition proba-
bilities for positive recurrent Markov chains, we will exploit a powerful tool
from probability theory, the coupling method (see, e.g., [6, 8]).

Definition 4.3 A coupling of two random variables X, Y : Ω → S is a
random variable Z : Ω → S× S such that

∑

y∈S

P[Z = (x, y)] = P[X = x], and
∑

x∈S

P[Z = (x, y)] = P[Y = y]
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for every x ∈ S, and for every y ∈ S, respectively. Hence, the coupling Z
has X and Y as its marginals.

Note that, except for artificial cases, there exists infinitely many cou-
plings of two random variables. The coupling method exploits the fact that
the total variation distance between the two distributions P[X ∈ A] and
P[Y ∈ A] can be bounded in terms of the coupling Z.

Proposition 4.4 (Basic coupling inequality) Consider two independent
random variables X,Y : Ω → S with distributions ν and π, respectively, de-
fined via ν(x) = P[X = x] and π(y) = P[Y = y] for x, y ∈ S. Then

‖ν − π‖TV ≤ 2P[X 6= Y ],

with [X 6= Y ] = {ω ∈ Ω : X(ω) 6= Y (ω)}.

Proof: We have for some subset A ⊂ S

|ν(A)− π(A)| = |P[X ∈ A]−P[Y ∈ A]|
= |P[X ∈ A,X = Y ] +P[X ∈ A,X 6= Y ]

−P[Y ∈ A,X = Y ]−P[Y ∈ A,X 6= Y ]|
= |P[X ∈ A,X 6= Y ]−P[Y ∈ A,X 6= Y ]|
≤ P[X 6= Y ].

Since
‖ν − π‖TV = 2 sup

A⊂S
|ν(A)− π(A)|

the statement directly follows. ¤

Note that the term P[X 6= Y ] in the basic coupling inequality can be
stated in terms of the coupling Z:

P[X 6= Y ] =
∑

x,y∈S,x6=y

P[Z = (x, y)] = 1−
∑

x∈S

P[Z = (x, x)].

Since there are many couplings the aim is two construct a coupling Z such
that

∑
x 6=y P[Z = (x, y)] is as small, or

∑
xP[Z = (x, x)] is as large as

possible. To prove convergence results for the evolution of the distribution
of some Markov chain, we exploit a specific (and impressive) example of the
coupling method.

Consider an irreducible, aperiodic, positive recurrent Markov chain X =
{Xk}k∈N with stationary distribution π and some initial distribution ν0.
Moreover, define another independent Markov chain Y = {Yk}k∈N that
has the same transition function as X, but the stationary distribution π as
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initial distribution. Observe that Y is a stationary process, i.e., the induced
distribution of Yk equals π for all k ∈ N. Then, we can make use of the
coupling method by interpreting the Markov chains as random variables
X,Y : Ω → SN and consider some coupling Z : Ω → SN × SN. Define the
coupling time Tc : Ω → N by

Tc = min{k ≥ 1 : Xk = Yk};

Tc is the first time at which the Markov chains X and Y met; moreover, it
is stopping time for Z. The next proposition bounds the distance between
the distributions νk and π at time k in terms of the coupling time Tc.

Proposition 4.5 Consider some irreducible, aperiodic, positive recurrent
Markov chain with initial distribution ν0 and stationary distribution π. Then,
the distribution νk at time k satisfies

‖νk − π‖TV ≤ 2P[k < Tc]

for every k ∈ N, where Tc denote the coupling time defined above.

T k−>

S

X
k

Y
k

X’
k

Figure 8: The construction of the coupled process X ′ as needed in the proof
of Prop. 4.5. Here, T denotes the value of the coupling time Tc for this
realization.

Proof: We start by defining a new stochastic process X ′ = {X ′
k}k∈N with

X ′
k : Ω → S (see Fig. 8) according to

X ′
k =

{
Xk; if k < Tc,

Yk; if k ≥ Tc.

Due to the strong Markov property 3.15 (applied to the coupled Markov
chain (Xk, Yk)k∈N), X ′ is a Markov chain with the same transition prob-
abilities as X and Y . As a consequence of the definition of X ′ we have
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Pν0 [Xk ∈ A] = Pν0 [X
′
k ∈ A] for k ∈ N and every A ⊂ S, hence the distribu-

tions of Xk and X ′
k are the same. Hence, from the basic coupling inequality,

we get

|νk(A)− π(A)| = |P[X ′
k ∈ A]−P[Yk ∈ A]| ≤ 2P[X ′

k 6= Yk].

Since {X ′
k 6= Yk} ⊂ {k < Tc}, we finally obtain

P[X ′
k 6= Yk] ≤ P[k < Tc],

which implies the statement. ¤

Proposition 4.5 enables us to prove the convergence of νk to π by proving
that P[k < Tc] converges to zero.

Theorem 4.6 Consider some irreducible, aperiodic, positive recurrent Markov
chain with stationary distribution π. Then, for any initial probability distri-
bution ν0, the distribution of the Markov chain at time k satisfies

‖νk − π‖TV → 0

as k → ∞. In particular, choosing the initial distribution to be a delta
distribution at x ∈ S, we obtain

‖P k(x, ·)− π‖TV → 0

as k →∞.

Proof: It suffices to prove P[Tc < ∞] = 1. Moreover, if we fixe some state
x∗ ∈ S and consider the stopping time

T ∗c = inf{k ≥ 1;Xk = x∗ = Yk},

then P[Tc < ∞] = 1 follows from P[T ∗c < ∞] = 1. To prove the latter
statement, consider the coupling Z = (Zk)k∈N with Zk = (Xk, Yk) ∈ S× S
with X = {Xk}k∈N and Y = {Yk}k∈N defined as above. Because X and Y
are independent, the transition matrix PZ of Z is given by

PZ

(
(v, w), (x, y)

)
= P (v, w)P (x, y)

for all v, w, x, y ∈ S. Obviously, Z has a stationary distribution given by

πZ(x, y) = π(x)π(y).

Furthermore the coupled Markov chain is irreducible: consider (v, w), (x, y) ∈
S×S arbitrary. Since X and Y are irreducible and aperiodic we can choose
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Irreducible and aperiodic

Recurrent MC

Positive recurrent Null recurrent

Markov chain

Transient MC

PSfrag replacements

, x ∈ S

�
x[Tx < ∞] < 1

�
x[Tx < ∞] = 1

�
x[Tx] < ∞

�
x[Tx] = ∞P k(x, y) → 0 ∀y ∈ S

P k(x, y) → π(y) = 1�
y [Ty] P k(x, y) → 0 ∀y ∈ S

1

Figure 9: Long run behaviour of an irreducible aperiodic Markov chain.

an integer k∗ > 0 such that P k∗(v, w) > 0 and P k∗(x, y) > 0 holds, see
Prop. 3.8. Therefore

P k∗
Z

(
(v, w), (x, y)

)
= P k∗(v, w)P k∗(x, y) > 0.

Hence Z is irreducible. Finally observe that T ∗c is the first return time of the
coupled Markov chain to the state (x∗, x∗). Since Z is irreducible and has a
stationary distribution, it is positive recurrent according to Thm. 3.21. By
Thm. 3.18, this implies P[T ∗c < ∞] = 1, which completes the proof of the
statement. ¤

Fig. 9 summarizes the long run behavior of irreducible and aperiodic
Markov chains.

4.2 Time reversal and reversibility

The notions of time reversal and time reversibility are very productive, in
particular w.r.t. the spectral theory, the central limit theory and theory of
Monte Carlo methods, as we will see.

Chang [3] has a nice motivation of time reversibility: Let X0, X1, . . . de-
note a Markov chain with transition function P . Imagine that I recorded
a movie of the sequence of states (X0, . . . , Xn), and I am showing you the
movie on my fancy machine that can play the tape forward or backward
equally well. Can you tell by watching the sequence of transitions on the
movie whether I am showing it forward or backward?

To answer this question, we determine the transition probabilities of the
Markov chain {Yk}k∈N obtained by reversing time for the original Markov
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chain {Xk}k∈N. Given some probability distribution π > 0, we require that

Pπ[Y0 = xm, . . . , Ym = x0] = Pπ[X0 = x0, . . . , Xm = xm]

holds for every m ∈ N and every x0, . . . , xm ∈ S in the case of reversibility.
For the special case m = 1 we have

Pπ[Y0 = y, Y1 = x] = Pπ[X0 = x,X1 = y] (18)

for x, y ∈ S. Denote by Q and P the transition functions of the Markov
chains {Yk} and {Xk}, respectively. Then, by equation (18) we obtain

π(y)Q(y, x) = π(x)P (x, y). (19)

Note that the diagonals of P and Q are always equal, hence Q(x, x) =
P (x, x) for every x ∈ S. Moreover, from eq. (20) we deduce by summing
over all x ∈ S that π is some stationary distribution of the Markov chain.

Definition 4.7 Consider some Markov chain X = {Xk}k∈N with transition
function P and stationary distribution π > 0. Then, the Markov chain
{Yk}k∈N with transition function Q defined by

Q(y, x) =
π(x)P (x, y)

π(y)
(20)

is called the time-reversed Markov chain (assoziated with X).

Example 4.8 Consider the two state Markov chain given by

P =
(

1− a a
b 1− b

)
.

for a, b ∈ [0, 1]. The two state Markov chain is an exceptionally simple
example, since we know on the one hand that the diagonal entries of Q
and P are identical, and on the other hand that Q is a stochastic matrix.
Consequently Q = P .

Example 4.9 Consider a Markov chain on the state space S = {1, 2, 3}
given by

P =




1− a a 0
0 1− b b
c 0 1− c


 .

for a, b, c ∈ [0, 1]. Denote by π the stationary distribution (which exists due
to Theorem 3.23). Then, π = πP is equivalent to aπ(1) = bπ(2) = cπ(3). A
short calculation reveals

π =
1

ab + ac + bc

(
bc, ac, ab

)
.
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Once again, we have only to compute the off–diagonal entries of Q. We get

Q =




1− a 0 a
b 1− b 0
0 c 1− c


 .

For illustration, consider the case a = b = c = 1. Then P is periodic
with period d = 3; it moves deterministically: 1 → 2 → 3 → 1 . . .. By
construction, the matrix Q corresponds to the time reversed Markov chain
that moves like: 3 → 2 → 1 → 3 . . ., but this is exactly the dynamics defined
by Q.

Definition 4.10 Consider some Markov chain X = {Xk}k∈N with transi-
tion function P and stationary distribution π > 0, and its associated time-
reversed Markov chain with transition function Q. Then X is called re-
versible w.r.t. π, if

P (x, y) = Q(x, y)

for all x, y ∈ S.

The above definition can be reformulated: a Markov chain is reversible
w.r.t. π, if and only if the detailed balance condition

π(x)P (x, y) = π(y)P (y, x) (21)

is satisfied for every x, y ∈ S. Eq. (21) has a nice interpretation in terms
of the probability flux defined in (11). Recall that the flux from x to y is
defined by fluxπ(x, y) = π(x)P (x, y). Thus, eq. (21) states that the flux from
x to y is the same as the flux from y to x—it is locally balanced between each
pair of states: fluxπ(x, y) = fluxπ(y, x) for x, y ∈ S. This is a much stronger
condition than the global balance condition that characterizes stationarity.
The global balance condition that can be rewritten as

∑
x π(y)P (y, x) =

π(y) =
∑

x π(x)P (x, y) states that the total flux leaving state x is the same
as the total flux into state x: fluxπ(x,S \ {x}) = fluxπ(S \ {x}, x).

Corollary 4.11 Given some Markov chain with transition function P and
stationary distribution π. If there exist a pair of states x, y ∈ S with π(x) > 0
such that

P (x, y) > 0, while P (y, x) = 0

then the detailed balance condition cannot hold for P , hence the Markov
chain is not reversible. This is in particular the case, if the Markov chain
is periodic with period d > 2.

Application of Corollary 4.11 yields that the three state Markov chain
defined in Example 4.9 cannot be reversible.
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Example 4.12 Consider the random walk on N with fixed parameter p ∈
(0, 1

2). The Markov chain is given by

P (x, x + 1) = p and P (x + 1, x) = 1− p

for x ∈ S and P (0, 0) = 1 − p, while all other transition probabilities are
zero. It is irreducible and admits a unique stationary distribution given by

π(0) =
1− 2p

1− p
and π(k) = π(0)

(
p

1− p

)k

for k > 0. Obviously, we expect no trouble due to Corollary 4.11. Moreover,
we have

π(x)P (x, x + 1) = π(x + 1)P (x + 1, x)

for arbitrary x ∈ S; hence, the detailed balance condition holds for P and
the random walk on N is reversible.

4.3 Some spectral theory

We now introduce the necessary notions from spectral theory in order to
analyze the asymptotic behavior of transfer operators. Throughout this sec-
tion, we assume that π is some stationary distribution of a Markov chain
with transition function P . Note that π is neither assumed to be unique nor
positive everywhere.

We start by introducing the Banach spaces (of equivalence classes)

lr(π) = {v : S → C :
∑

x∈S

|v(x)|rπ(x) < ∞},

for 1 ≤ r < ∞ with corresponding norms

‖v‖r =

(∑

x∈S

|v(x)|rπ(x)

)1/r

and
l∞(π) = {v : S → C : π- sup

x∈S
|v(x)| < ∞},

with supremums norm defined by

‖v‖∞ = π- sup
x∈S

|v(x)| = sup
x∈S,π(x)>0

|v(x)|.

Given two functions u, v ∈ l2(π), the π–weighted scalar product 〈·, ·〉π :
S× S → C is defined by

〈u, v〉π =
∑

x∈S

u(x)v̄(x)π(x),
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where v̄ denotes the conjugate complex of v. Note that l2(π), equipped with
the scalar product 〈·, ·〉π, is a Hilbert space.

Remark. In general, the elements of the above introduced function
spaces are equivalence classes of functions [f ] = {g : S → C : g(x) =
f(x), if π(x) > 0} rather than single functions f : S → C (this is equivalent
to the approach of introducing equivalence classes of Lebesgue-integrable
functions (see, e.g., [11])). Hence, functions that differ on a set of points
with π-measure zero are considered to be equivalent. However, if the prob-
ability distribution π is positive everywhere, we regain the interpretation of
functions as elements.

Before proceeding, we need the following two definitions.

Definition 4.13 Given some Markov chain with stationary distribution π.

1. Some measuere ν ∈M is said to be absolutely continuous w.r.t. π,
in short ν ¿ π, if

π(x) = 0 ⇒ ν(x) = 0

for every x ∈ S. In this case, there exists some function f : S → C
such that ν = fπ. The function f is called the Radon-Nikodym
derivative of ν w.r.t. π and sometimes denoted by dν/dπ.

2. The stationary distribution π is called maximal, if every other sta-
tionary distribution ν is absolutely continuous w.r.t. π.

In broad terms, a stationary distribution is maximal, if it possesses as
many non–zero elements as possible. Note that a maximal stationary dis-
tribution need not be unique.

Example 4.14 Consider the state space S = {1, 2, 3, 4} and a Markov chain
with transition function

P =




1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0


 .

Then ν1 = (1, 0, 0, 0), ν2 = (0, 1, 0, 0), ν3 = (0, 0, 1, 0) are stationary distri-
butions of P , but none of them is obviously maximal. In contrast to that,
both π = (1

3 , 1
3 , 1

3 , 0) and σ = (1
2 , 1

4 , 1
4 , 0) are maximal stationary distribu-

tions. Note that since state x = 4 is transient, every stationary distribution
ν satisfies ν(4) = 0 due to Proposition 3.17.



44 4 ASYMPTOTIC BEHAVIOR

To this end, we consider some Markov chain with maximal stationary
distribution π. We now restrict the transfer operator P from the space of
complex finite measures M to the space of complex finite measures that are
absolutely continuous w.r.t. π. We define for 1 ≤ r ≤ ∞

Mr(π) = {ν ∈M : ν ¿ π and dν/dπ ∈ lr(π)}

with corresponding norm ‖ν‖Mr(π) = ‖dν/dπ‖r. Note that ‖ν‖M1(π) =
‖ν‖TV and M1(π) ⊇ M2(π) ⊇ . . .. We now define the transfer operator
P : M1(π) →M1(π) by

νP (y) =
∑

x∈S

ν(x)P (x, y).

It can be shown by exploiting Hölders inequality that P is well-defined on
any Mr(π) for 1 ≤ r ≤ ∞.

It is interesting to note that the transfer operator P on M1(π) induces
some transfer operator P on l1(π): Given some ν ∈ M1(π) with derivative
v = dν/dπ, it follows that νP ¿ π (if π is some stationary measure with
πP = π then π(y) implies p(x, y) for every x ∈ S with π(x) > 0. Now, the
statement directly follows). Hence, we define P by (vπ)P = (vP)π. More
precisely, it is P : l1(π) → l1(π) given by

vP(y) =
∑

x∈S

Q(y, x)v(x)

for v ∈ l1(π). Above, Q with Q(y, x) = π(x)P (x, y)/π(y) is the transition
function of the time-reversed Markov chain (see eq. (20)), which is an in-
teresting relation between the original Markov chain and the time-reversed
one. Actually, we could formulate all following results also in terms of the
transfer operator P, which is usually done for the general state space case.
Here, however, we prefer to state the results related to the function space
M1(π), since then there is a direct relation to the action of the transfer
operator and the (stochastic) matrix-vector multiplication from the left. In
terms of l1(π), this important relation would only hold after some suitable
reweighting (of the stochastic matrix). From a functional analytical point
of view, however, the two function spaces (M1(π), ‖ · ‖TV ) and (l1(π), ‖ · ‖1)
are equivalent.

Central for our purpose will be notion of eigenvalues and eigenvectors of
some transfer operator P : M1(π) →M1(π). Some number λ ∈ C is called
an eigenvalue of P , if there exists some ν ∈ M1(π) with ν 6= 0 satisfying
the eigenvalue equation

νP = λν. (22)
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The function ν is called an (left) eigenvector corresponding to the eigen-
value λ. Note that not every function ν satisfying (22) is an eigenvector,
since ν has to fulfill the integrability condition ||ν||TV < ∞ by definition
(which, of course, is always satisfied in the finite state space case). The
subspace of all eigenvectors corresponding to some eigenvalue λ is called the
eigenspace corresponding to λ. By σ(P ) we denote the spectrum of P ,
which contains all eigenvalues of P . In the finite state space case, we have
σ(P ) = {λ ∈ C : λ is eigenvalue of P}, while for the infinite state space
case, it may well contain elements that are not eigenvalues (see, e.g., [11,
Kap. VI]).

The transfer operators considered above is closely related to a transfer
operator acting on bounded (measurable) functions. Define T : l∞(π) →
l∞(π) by

Tu(x) = Ex[u(X1)] =
∑

y∈S

P (x, y)u(y)

for u ∈ l∞(π). We remark that for the important class of reversible Markov
chains, T is simply given by Tv(x) =

∑
y P (x, y)v(y) (which corresponds

to the matrix vector multiplication from the right). For some function ν ∈
M1(π) and u ∈ l∞(π), define the duality bracket 〈·, ·〉 : M1(π)× l∞(π) by

〈ν, u〉 =
∑

x∈S

ν(x)u(x).

Then, we have

〈νP, u〉 =
∑

x∈S

∑

y∈S

ν(y)P (y, x)u(x) =
∑

y∈S

ν(y)
∑

x∈S

P (y, x)u(x) = 〈ν, Tu〉,

hence T is the adjoint operator of P , or P ∗ = T . This fact can be widely
exploited when dealing with spectral properties of P , since the spectrum of
some operator is equal to the spectrum of its adjoint operator (see, e.g., [11,
Satz VI.1.2]). Hence, if λ ∈ σ(P ), then there exists some non-vanishing func-
tion u ∈ l∞(π) with Tu = λu (and analogously for the reversed implication).

Example 4.15 Consider some transfer operator P acting on M1(π). Then
πP = π (since 1 is in M1(π)) and consequently the λ = 1 is an eigenvalue
of P .

The next proposition collects some useful facts about the spectrum of
the transfer operator.

Proposition 4.16 Consider a transition function P on a countable state
space with stationary distribution π. Then, for the associated transfer oper-
ator P : M1(π) →M1(π) holds:
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(a) The spectrum of P is contained in the unit disc, i.e. λ ∈ σ(P ) implies
|λ| ≤ 1.

(b) λ = 1 is an eigenvalue of P , i.e., 1 ∈ σ(P ).

(c) If λ = a + ib is some eigenvalue of P , so is η = a − ib. Hence, the
spectrum σ(P ) is symmetric w.r.t. the real axis.

(d) If the transition function is reversible, then the spectrum of P acting
on M2(π) is real–valued, i.e., σ(P ) ⊂ [−1, +1].

Item (d) of Proposition 4.16 is due to the following fact about reversible
Markov chains that emphasizes their importance.

Theorem 4.17 Let T : l2(π) → l2(π)) denote some transfer operator cor-
responding to some reversible Markov chain with stationary distribution π.
Then T is self–adjoint w.r.t. to 〈·, ·〉π, i.e.,

〈Tu, v〉π = 〈u, Tv〉π
for arbitrary u, v ∈ l2(π). Since P ∗ = T , the same result holds for P on
M2(π).

Below, we will give a much more detailed analysis of the spectrum of P such
that it is possible to infer structural properties of the corresponding Markov
chain.

In the sequel, we often will assume that the following assumption on the
spectrum of P as an operator action on M1(π) holds.

Assumption R. There exists some constant R < 1 such that
there are only finitely many λ ∈ σ(P ) with |λ| > R, each being
an eigenvalue of finite multiplicity3.

Assumption R is, e.g., a condition on the so–called essential spectral ra-
dius of P inM1(π) [4]; it is also closely related to the so-called Doeblincondition.
Assumption R is necessary only for the infinite countable state space case,
since for the finite state space case, it is trivially fulfilled.

Proposition 4.18 Given some Markov chain {Xk}k∈N on S with maxi-
mal stationary distribution π > 0. Let P : M1(π) → M1(π) denote the
associated transfer operator. Then, condition R is satisfied, if

1. the state space is finite; in this case it is R = 0.
3For the general definition of multiplicity see [5, Chap. III.6]. If P is in addition

reversible, then the eigenvalue λ = 1 is of finite multiplicity, if there exist only finitely
many mutually linear independent corresponding eigenvectors.
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2. the transition function P fulfills the Doeblin condition, i.e., there
exist ε, δ > 0 and some m ∈ N such that for every y ∈ S

π(y) ≤ ε =⇒ Pm(x, y) ≤ 1− δ.

for all x ∈ S. In this case, it is R = (1− δ)1/m.

3. the transfer operator is constrictive, i.e., there exist ε, δ > 0 and
some m0 ∈ N such that for every ν ∈M1(π)

π(y) ≤ ε =⇒ νPm(y) ≤ 1− δ.

for all m ≥ m0. In this case, it is R = (1− δ)1/m0.

Proof: The statements 2. and 3. follow from Thm. 4.13 in [4]. 1. follows
from 2. or 3. by choosing ε < miny∈S π(y), which is positive due to the
finiteness of the state space. Now, choose δ = 1 and m = m0 = 1. ¤

4.4 Evolution of transfer operators

We start by stating the famous Frobenius–Perron theorem for transfer opera-
tors related to Markov chains on some finite state space (see, e.g., [1, 2, 9]).
We then state the result for the infinite state space case. To do so, we
define, based on stationary distribution π, the transition function Π =
(Π(x, y))x,y∈S by

Π(x, y) = π(y)

Hence, each row of Π is identical to π, and the Markov chain associated
with Π is actually a sequence of i.i.d. random variables, each distributed
according to π. We will see that Π is related to the asymptotic behaviour
of the powers of the transition matrix P . In matrix notation, it is Π = 1πt,
where 1 is the function constant 1.

Theorem 4.19 (Frobenius–Perron theorem) Let P denote an n × n
transition matrix that is irreducible and aperiodic. Then

1. The eigenvalue λ1 = 1 is simple and the corresponding left and right
eigenvectors can be chosen positive. More precisely, πP = π for π > 0
and P1 = 1 for 1 = (1, . . . , 1).

2. Any other eigenvalue µ of P is strictly smaller (in modulus) than λ1 =
1, i.e., |µ| < 1 for any µ ∈ σ(P ) with µ 6= 1.
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3. Let λ1, λ2, . . . , λr with some r ≤ n 4 denote the eigenvalues of P or-
dered in such a way that

λ1 > |λ2| ≥ |λ3 ≥ . . . ≥ |λr|.

Let moreover m denote the algebraic multiplicity5 of λ2. Then

Pn = 1πt +O(nm−1|λ2|n).

Proof: See, e.g., [9]. ¤

We now state an extended result for the infinite state space case.

Theorem 4.20 Consider some Markov chain X = {Xk}k∈N with maximal
stationary distribution π > 0 and let P : M1(π) → M1(π) denote the
associated transfer operator satisfying Assumption R. Then the following
holds:

1. The Markov chain X is irreducible, if and only if the eigenvalue λ = 1
of P is simple, i.e., the multiplicity is equal to 1.

2. Assume that the Markov chain is irreducible. Then X is aperiodic,
if and only if the eigenvalue λ = 1 of P is dominant, i.e., for any
η ∈ σ(P ) with η 6= 1 implies |η| < 1.

3. If the Markov chain is irreducible and aperiodic, then Pn → Π as
n →∞. More precisely, there exists constants M > 0 and r < 1 such
that

||Pn −Π||TV ≤ Mrn

for n ≥ 1. Defining Λabs(P ) = sup{|λ| : λ ∈ σ(P ), |λ| < 1}, it is
r ≤ Λabs + ε for any ε > 0 and r = Λabs for reversible Markov chains.

Proof: 1.) By Thm. 4.14 of [4], λ = 1 simple is equivalent to a decomposi-
tion of the state space S = E ∪ F with E being invariant (πEP = πE with
πE = 1Eπ) and F being of π–measure zero. Since π > 0 by assumption,
F is empty and thus E = S. By contradiction it follows that the Markov
chain is irreducible.

2.) By Cor. 4.18 (ii) of [4], λ = 1 simple and dominant is equivalent to P
being aperiodic (which in our case is equivalent to the Markov chain being
aperiodic).

4If P is reversible than r = n and there exists a complete basis of (orthogonal) eigen-
vectors.

5The algebraic multiplicity of λ2 is defined as .... If P is reversible than m is equal to
the dimension of the eigenspace corresponding to λ2.
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3.) By Cor. 4.22 of [4], the inequality ||Pn −Π||TV ≤ Mrn is equivalent
to P being ergodic and aperiodic (which in our case is equivalent to the
Markov chain being irreducible and aperiodic—following from 1.) and 2.)).
¤

Theorem 4.20 (3.) states that for large n, the Markov chain Xn at time n
is approximately distributed like π, and moreover it is approximately inde-
pendent of its history, in particular of Xn−1 and X0. Thus the distribution
of Xn for n À 0 is almost the same, namely π, regardless of whether the
Markov chain started at X0 = x or X0 = y for some initial states x, y ∈ S.

We end by relating a certain type of ergodicity condition to the above
theorem.

Definition 4.21 Let X = {Xk}k∈N denote an irreducible Markov chain
with transition function P and stationary distribution π. Then, X is called
uniformly ergodic, if for every x ∈ S

||P k(x, ·)− π||TV ≤ Crk (23)

with positive constants C ∈ R and r < 1.

Theorem 4.22 Let {Xk}k∈N denote some uniformly ergordic Markov chain.
Then, the Markov chain is irreducible, aperiodic and Assumption R is sat-
isfied. Hence, Pn → Π for n →∞ as in Them. 4.20.

Proof: Apply Thm. 4.24 of [4] and note that we required the properties to
hold for every x ∈ S rather than for π almost every x ∈ S. ¤
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5 Empirical averages

5.1 The strong law of large numbers

Assume that we observe some realization X0(ω), X1(ω), . . . of a Markov
chain. Is it possible to “reconstruct” the Markov chain by determining
its transition probabilities just from the observed data?

In general the answer is ’no’; for example, if the Markov chain is re-
ducible, we would expect to be able to approximate only the transition
probabilities corresponding to one communication class. If the Markov chain
is transient, the reconstruction attempt will also fail. However, under some
reasonable conditions, the answer to our initial question is ’yes’.

In the context of Markov chain theory, a function f : S → R defined
on the state space of the chain is called an observable. Observables allow
to perform “measurements” on the system that is modelled by the Markov
chain. Given some Markov chain {Xk}k∈N we define the so–called empiri-
cal average Sn(f) of the observable f by

Sn(f) =
1

n + 1

n∑

k=0

f(Xk).

Note that the empirical average is a random variable, hence Sn(f) : Ω →
R ∪ {±∞}. Under suitable conditions the empirical average converges to a
probabilistic average, i.e., the expectation value

Eπ[f ] =
∑

x∈S

f(x)π(x).

Theorem 5.1 (Strong law of large numbers [2, 10]) Let {Xk}k∈N de-
note an irreducible Markov chain with stationary distribution π, and let
f : S → R be some observable such that

∑

x∈S

|f(x)|π(x) < ∞. (24)

Then for any initial state x ∈ S, i.e., X0 = x

1
n + 1

n∑

k=0

f(Xk) −→ Eπ[f ] (25)

as n →∞ and Px–almost surely, i.e,

Px

[{
ω : lim

n→∞
1

n + 1

n∑

k=0

f
(
Xk(ω)

)
= Eπ[f ]

}]
= 1.
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Proof: Due to the assumption {Xk}k∈N is irreducible and positive rekur-
rent, therefore ν(y) = Ex[

∑Tx
n=0 1{Xn=y}] defines an invariant measure, while

the stationary distribution is given by π(y) = ν(y)
Z , with the normalization

constant Z =
∑

y∈S ν(y) (cp. Theorem 3.19). For the random variable
U0 =

∑Tx
k=0 f(Xk) the expectation is given by

E[U0] = Ex

[
Tx∑

k=0

f(Xk)

]
= Ex




Tx∑

k=0

∑

y∈S

f(y)1{Xk=y}




=
∑

y∈S

f(y)Ex

[
Tx∑

k=0

1{Xk=y}

]
=

∑

y∈S

f(y)ν(y)

(26)

Now consider Up =
∑τp+1

k=τp+1 f(Xk), with p ≥ 1 and Tx = τ0, τ1, τ2, . . . the
successive return times to x. It follows from the strong Markov property
(Theorem 3.15) that U0, U1, U2, . . . are i.i.d. random variables. Since from
(24) and (26) we have E[|U0|] < ∞, therefore the famous Strong Law of
Large Numbers for i.i.d. random variables can be applied and yields with
probability one, i.e. almost surely,

lim
n→∞

1
n + 1

n∑

k=0

Uk =
∑

y∈S

f(y)ν(y) ⇔ lim
n→∞

1
n + 1

τn+1∑

k=0

f(Xk) =
∑

y∈S

f(y)ν(y).

For the moment assume that f ≥ 0 and define Nx(n) :=
∑n

k=0 1{Xk=x}, the
number of visits in x within the first n steps. Due to

τNx(n) ≤ n < τNx(n)+1

and f ≥ 0 it follows that

1
Nx(n)

τNx(n)∑

k=0

f(Xk) ≤ 1
Nx(n)

n∑

k=0

f(Xk) ≤ 1
Nx(n)

τNx(n)+1∑

k=0

f(Xk). (27)

Since the Markov chain is recurrent limn→∞Nx(n) = ∞, so that the ex-
tremal terms in (27) converge to

∑
y∈S f(y)ν(y) and therefore

lim
n→∞

1
Nx(n)

n∑

k=0

f(Xk) =
∑

y∈S

f(y)ν(y) = Z
∑

y∈S

f(y)π(y).

Now consider the observable g ≡ 1, which is positive and fulfills condi-
tion (24), since {Xk}k∈N is recurrent. By the equation above we have

lim
n→∞

1
Nx(n)

n∑

k=0

g(Xk) = lim
n→∞

n + 1
Nx(n)

= Z ⇒ lim
n→∞

Nx(n)
n + 1

=
1
Z

,



52 5 EMPIRICAL AVERAGES

and finally

lim
n→∞

1
n + 1

n∑

k=0

f(Xk) = lim
n→∞

1
Nx(n)

Nx(n)
n + 1

n∑

k=0

f(Xk)

=
1
Z

∑

y∈S

f(y)ν(y) =
∑

y∈S

f(y)π(y).

For arbitrary f , consider f+ = max(0, f) and f− = max(0,−f) and take
the difference between the obtained limits. ¤

Theorem 5.1 is often referred to as ergodic theorem. It states that the
time average (left hand side of (25)) is equal to the space average (right
hand side of (25)). The practical relevance of the strong law of large num-
bers is the following. Assume we want to calculate the expectation Eπ[f ]
of some observable f w.r.t. the stationary distribution of the Markov chain
{Xk}k∈N. Instead of first computing π and then Eπ[f ], we can alternatively
compute some realization X0(ω), X1(ω), . . . and then determine the corre-
sponding empirical average Sn(f). By Theorem 5.1, Sn(f) will be a good
approximation to Eπ[f ] for “large enough” n and almost every realization
ω ∈ Ω.

Why should we do so? There are many applications, for which the transi-
tion matrix of the Markov chain is not given explicitly. Instead, the Markov
chain is specified by an algorithm of how to compute a realization of it (this
is, e.g., the case, if the Markov chain is specified as a stochastic dynamics
system like in eq. (4)) . In such situations, the strong law of large numbers
can be extremely useful. Of course, we have to further investigate the ap-
proximation quality of the expectation by empirical averages, in particular
try to specify how large “large enough” is.

Example 5.2 Consider as observable f : S → R the indicator function of
some subset A ⊂ S, i.e.,

f(x) = 1{x ∈ A} =

{
1; if x ∈ A

0; otherwise .

Then under the conditions of Theorem 5.1

1
n + 1

n∑

k=0

1{Xk ∈ A} =
1

n + 1

n∑

k=0

1A(Xk) −→ π(A)

as n →∞. Hence, π(A) can be interpreted as the long time average number
of visits to the subset A. Consequently for large enough n, π(A) approx-
imately denotes the probability of encountering the Markov chain after n
steps in subset A.
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To answer the initial question whether we can reconstruct the transition
probabilities from a realization, we state the following

Corollary 5.3 (Strong law of large numbers II [2]) Let {Xk}k∈N de-
note an irreducible Markov chain with transition matrix P =

(
P (x, y)

)
x,y∈S

and stationary distribution π, and let g : S× S → R be some function such
that

∑

x,y∈S

|g(x, y)|π(x)P (x, y) < ∞.

Then for any initial state x ∈ S, i.e., X0 = x we have

1
n + 1

n∑

k=0

g(Xk, Xk+1) −→ Eπ,P [g] =
∑

x,y∈S

g(x, y)π(x)P (x, y)

as n →∞ and Px–almost surely.

Proof: We leave this as an excercise. Prove that π(x)P (x, y) is a stationary
distribution of the bivariate Markov chain Yk = (Xk, Xk+1). ¤

Corollary 5.3 is quite useful for our purpose. Consider the function
g : S× S → R with

g(x, y) = 1(u,v)(x, y) =

{
1; if x = u, y = v

0; otherwise .

Under the condition of Corollary 5.3

1
n + 1

n∑

k=0

1{Xk = u,Xk+1 = v} −→ π(u)P (u, v)

as n → ∞. Hence, if we first compute π(u) as outlined in Example 5.2
with A = {u}, we can then approximate the transition probability P (u, v)
by computing the average number of “transitions Xk = u,Xk+1 = v” with
0 ≤ k < n and divide it by nπ(u).
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